Jin Long, Ruan Zheng, Ge Runsheng, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. DOI:  10.11898/1001-7313.20160306.
Citation: Jin Long, Ruan Zheng, Ge Runsheng, et al. Bright band analysis in Yangtze-Huaihe Region of Anhui using data detection from C-FMCW radar. J Appl Meteor Sci, 2016, 27(3): 312-322. DOI:  10.11898/1001-7313.20160306.

Bright Band Analysis in Yangtze-Huaihe Region of Anhui Using Data Detection from C-FMCW Radar

DOI: 10.11898/1001-7313.20160306
  • Received Date: 2015-06-25
  • Rev Recd Date: 2016-01-07
  • Publish Date: 2016-05-31
  • Being different from the scanning radar, the vertical detection radar is used to analyze the micro-physics process in the precipitation cloud and the fusion layer from the vertical structural feature and the evolution process of the precipitation cloud. The C-FMCW vertical pointing radar adopts the solid-state system, bistatic antenna technology, and the demodulated signal processing adopts two-dimensional FFT signal processing technology to extract the distance information and the spectrum distribution information in the range bin. The vertical resolution of data is from 15 m to 30 m and the time resolution is from 1 s to 3 s, and the minimum reflectivity at 15 km height is-20 dBZ. Compared with the neighboring CINRAD/SA radars at Bengbu and Hefei, the reflectivity calibration difference is less than 1 dB, and root mean square error is less than 2.02 dB. Using C-FMCW radar detective data from June to August in 2013 at Dingyuan of Anhui, the bright band of the precipitation cloud detection data in 46 h are identified. The cumulative rainfall reaches 340.3 mm, during which 55620 precipitation cloud vertical profiles are obtained. 39.1% of precipitation clouds show clear bright band structural feature and during the occurrence of the bright band the precipitation makes up 15% of the total amount. During the Yangtze-Huaihe rainy season, the bright bands appear in stratiform cloud, convective cloud and the mixed precipitation system. In the stratiform cloud, the bright band is most stable and maintains longer. The bright band appears in the decay stage of the convective precipitation and the melting increase is obviously slower. The aggregation increase is of the strongest in the mixed precipitation system, after which the continuous bight band structure is broken by the strengthened convection distribution. The micro-physics process in the fusion layer is complicated. Excluding effects of phase changes and particle number concentration changes, the vapor change in the melting process is given. The maximum reflectivity in the melting process is used to analyze the layering process. It shows the melting process in the upper layer is mainly absorption growth, while in the lower layer is breakup process.
  • Fig. 1  C-FMCW radar detect stratiform cloud revolution sequence diagram from 2030 UTC to 2130 UTC on 22 Jun 2013

    Fig. 2  Convective cloud revolution sequence detected by C-FMCW radar on 24 Aug 2013

    Fig. 3  Convective cloud revolution sequence detected C-FMCW radarfrom 2030 UTC to 2130 UTC on 4 Jul 2013

    Fig. 4  Bright band identification results and melting process parameters from 2138 UTC to 2154 UTC on 4 Jul 2013

    (a) reflectivity, (b) velocity, (c)G1 and G2, (d)G, (e) Zp

    Fig. 5  Melting parameters in the different areas of bright band

    (a)Ⅰ area, (b)Ⅱ area, (c) all areas

    Table  1  Bright-band and rain count in 3 precipitation types

    降水云
    类型
    降水
    过程
    降水时
    长/h
    亮带时间
    比例/%
    过程降水
    量/mm
    亮带
    比例/%
    过程降水强度
    /(mm·h-1)
    亮带期间降水强度
    /(mm·h-1)
    SC 06-22 10.17 30 4.7 38 0.46 0.59
    CCD 07-21 2.38 11 37.1 0.5 14.18 0.64
    CCD 08-24 9.05 78 115.6 4 12.77 0.66
    MC 06-24 13.13 42 89.0 16 6.78 2.58
    MC 07-04 6.36 58 49.3 50 7.43 6.68
    MC 07-21 13.33 15 43.4 13 3.23 2.83
    DownLoad: Download CSV

    Table  2  The statistical characteristic of them bright bind structure

    降水过程 降水类型 ΔH/m Ⅰ区/m Ⅱ区/m Zp/dBZ ΔV/(m·s-1)
    平均 δ 平均 δ 平均 δ
    06-22 SC 640 85 310 50 330 65 26.90 3.45
    07-21 CCD 630 80 260 55 370 50 24.45 4.72
    08-24 CCD 720 95 320 65 400 60 29.56 4.70
    06-24 MC 770 140 360 100 410 80 36.61 4.95
    07-04 MC 720 120 340 110 380 110 32.31 4.65
    07-22 MC 740 130 350 115 390 105 31.00 4.75
    DownLoad: Download CSV

    Table  3  The average and the distribution proportion of G1, G2and G of three kind precipitation cloud

    日期 降水云类型 G1/dB G2/dB G/dB ΔZ/dB
    06-22 SC 6.05 -5.88 0.17 1.77
    07-21 CCD 5.75 -4.99 0.76 1.3
    08-24 CCD 6.16 -5.15 1.01 2.01
    06-24 MC 7.87 -4.28 3.59 4.87
    07-04 MC 7.86 -5.56 2.29 3.72
    07-22 MC 6.35 -4.39 1.96 3.21
    DownLoad: Download CSV
  • [1]
    Neiman P J, Wick G A, Ralph F M, et al.Wintertime nonbrightband rain in California and Oregon during CALJET and PACJET:Geographic, interannual, and synoptic variability.Mon Wea Rev, 2005, 133:1199-1223. doi:  10.1175/MWR2919.1
    [2]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [3]
    Kim D K, Knupp K R, Williams C R.Airflow and precipitation properties within the stratiform region of tropical storm Gabrielle during landfall.Mon Wea Rev, 2009, 137(6):1954-1971. doi:  10.1175/2008MWR2754.1
    [4]
    Schafer R, Avery S, May P, et al.Williams estimation of drop size distributions from dual frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique.J Atmos Oceanic Technol, 2002, 19:864-874. doi:  10.1175/1520-0426(2002)019<0864:EORDSD>2.0.CO;2
    [5]
    陈明轩, 高峰.利用一种自动识别算法移除天气雷达反射率因子中的亮带.应用气象学报, 2006, 17(2):207-214. doi:  10.11898/1001-7313.20060212
    [6]
    吴翠红, 万玉发, 吴涛, 等.雷达回波垂直廓线及其生成方法.应用气象学报, 2006, 17(2):233-239. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060239&flag=1
    [7]
    肖艳娇, 刘黎平, 李中华.任意基线雷达反射率因子垂直剖面生成算法.应用气象学报, 2008, 19(4):428-434. doi:  10.11898/1001-7313.20080406
    [8]
    张乐坚, 程明虎, 陶岚.CINRAD-SA/SB零度层亮带识别方法.应用气象学报, 2010, 21(2):172-179. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100206&flag=1
    [9]
    Williams C R, Ecklund W L, Gage K S.Classification of precipitating clouds in the tropics using 915-MHz wind profilers.J Atmos Oceanic Technol, 1995, 12:996-1012. doi:  10.1175/1520-0426(1995)012<0996:COPCIT>2.0.CO;2
    [10]
    White D J, Gottas E T, Strem F M, et al.An automated brightband height detection algorithm for use with Doppler radar spectral moments.J Atmos Oceanic Technol, 2002, 19:687-697. doi:  10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2
    [11]
    Rico R M A, Cluckie I D.Bright-band detection from radar vertical reflectivity profiles.Int J Remote Sensing, 2007, 28(18):4013-4025. doi:  10.1080/01431160601047797
    [12]
    Fabry F, Zawadzki I.Long-term radar observations of the melting layer of precipitation and their interpretation.J Atmos Sci, 1995, 52:838-851. doi:  10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2
    [13]
    Stewart R E, Marwitz J D, Pace L C, et al.Characteristics through the melting layer of stratiform c1ouds.J Atmos Sci, 1984, 41:3227-3237. doi:  10.1175/1520-0469(1984)041<3227:CTTMLO>2.0.CO;2
    [14]
    Drummond F J, Rogers R R, Cohn S A, et al.A new look at the melting layer.J Atmos Sci, 1996, 53(5):759-769. doi:  10.1175/1520-0469(1996)053<0759:ANLATM>2.0.CO;2
    [15]
    黄钰, 阮征, 葛润生, 等.风廓线雷达探测零度层亮带的试验研究.高原气象, 2011, 30(5):1376-1383. http://cdmd.cnki.com.cn/Article/CDMD-10300-1011155644.htm
    [16]
    Williams A B W, Gage K S, Ralph F M.Vertical structure of precipitation and related microphysics observed by NOAA profilers and TRMM during NAME 2004.Climate, 2007, 20:1693-1712. doi:  10.1175/JCLI4102.1
    [17]
    Hooper J E N, Kippax A A.Interim Report on Measurements of Radar Echo Intensities from Rain and Snow.TRE Report T-2082, 1947.
    [18]
    陈万奎, 游来光.融化层附近降水粒子微物理特征的个例分析.应用气象学报, 1987, 2(2):143-150. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19870219&flag=1
    [19]
    Austin P M, Bemis A C.A quantitative study of the "bright band" in radar precipitation echoes.J Atmos Sci, 1950, 7:145-151. https://www.researchgate.net/publication/234246543_a_Quantitative_Study_of_the_BRIGHT_Band%27_in_Radar_Precipitation_Echoes
    [20]
    Löffler-Mang M, Joss J.An optical disdrometer for measuring size and velocity of hydrometeors.J Atmos Oceanic Technol, 2000, 17(2):130-139. doi:  10.1175/1520-0426(2000)017<0130:AODFMS>2.0.CO;2
    [21]
    Friedrich K E A K, Masters F J, Lopez C R.Drop-size distributions in thunderstorms measured by optical disdrometers during VORTEX2.Mon Wea Rev, 2013, 141(4):1182-1203. doi:  10.1175/MWR-D-12-00116.1
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(3)

    Article views (4353) PDF downloads(643) Cited by()
    • Received : 2015-06-25
    • Accepted : 2016-01-07
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint