Chen Yuanzhao, Yu Xiaoding, Chen Xunlai, et al. A tornado in South China in May 2015. J Appl Meteor Sci, 2016, 27(3): 334-341. DOI:  10.11898/1001-7313.20160308.
Citation: Chen Yuanzhao, Yu Xiaoding, Chen Xunlai, et al. A tornado in South China in May 2015. J Appl Meteor Sci, 2016, 27(3): 334-341. DOI:  10.11898/1001-7313.20160308.

A Tornado in South China in May 2015

DOI: 10.11898/1001-7313.20160308
  • Received Date: 2015-11-05
  • Rev Recd Date: 2016-01-28
  • Publish Date: 2016-05-31
  • A severe tornado event near Baoan International Airport of Shenzhen, Guangdong Province on 11 May 2015 is investigated. Based on the routine upper-air, surface automatic weather station (AWS), Doppler radar, wind profile data and NCEP 6-hour analysis data (1°×1°), the environmental condition, structure and evolution are analyzed. The intensity of this tornado belongs to the F1 tornado intensity category. The tornado event occurs in front of 500 hPa trough, warm and moist area ahead of 850 hPa shear lines and the warm section before surface cold front. It is significant that the atmospheric convective instability is strengthened by the low temperature and humidity increasing, and the dry cold air behind 500 hPa trough moving eastward. The calculation of atmospheric convective parameters shows that there is powerful convective available potential energy (CAPE), strong low-level vertical wind shear and abundant water vapor in atmospheric environment before the tornado occurs. The analysis of Doppler radar products also indicates that the storm has a life span lasting about 1 hour, during which its echo top extends the height of nearly 5 km. The tornado initially comes from a quasi-linear convective system along the surface convergence line. The quasi-linear convective system moves slowly down and becomes a massive comma echo, finally develops into hooked echo, and the tornado is detected near the weak echo area. The echo of the strongest center value reaches 62 dBZ. The tornado locates at the edge of the strongest echo gradient region near the weak echo region, which indicates that the strong updraft contributes most to the tornado. The mesocyclone first appears in the middle cell of the storm, beginning at 3 km height and then developing upward and downward. The height of the strong core (no less than 50 dBZ) is below 5 km in the tornado event, making it a low centroid convective system. The mesocyclone always shows cyclonic rotation characteristics from originated to maturity in the radial velocity chart. When the rotational speed increases, the radius of the mesocyclone decreases and the largest vertical vorticity associate with the mesocyclone is 1.2×10-2 s-1. The distance separating the strongest inbound and outbound radial velocities (called velocity couplet) is reduced from 8 km to 6 km. The mesocyclone deepens gradually downwards, producing the tornado. When the tornado is underway, strong divergence occurs at the storm top above the tornado. Therefore, in operational work more attention should be paid to the sudden change of echo shape and rapidly developing cyclone vortex.
  • Fig. 1  The tornado lived near Shenzhen airport on 11 May 2015

    Fig. 2  850 hPa wind (bard) and water vapor flux divergence (unit: 10-5s-1) at 1400 BT 11 May 2015

    (the black point denotes the position of tornado)

    Fig. 3  Reflectivity from 1.5° elevation of Guangzhou radar at 1518 BT and 1536 BT on 11 May 2015

    (the red circle shows the tornado corresponding echo)

    Fig. 4  Four-panel reflectivity and radial velocity of Guangzhou radar with different elevations centered on the supercell at 1542 BT 11 May 2015

    (the tornado is marked by white point, the mesocyclone is marked by brown circle)

    Fig. 5  The change of base and top of mesocyclone with the strongest shear height from 1512 BT to 1600 BT on 11 May 2015 by Guangzhou radar

    Fig. 6  Vertical cross section of reflectivity of Guangzhou radar at 1542 BT 11 May 2015

    Table  1  The comparison of 3 tornadoes

    龙卷发生
    时间及地点
    龙卷级别 对流有效位能 抬升凝结
    高度
    龙卷时
    回波形态
    回波悬垂 50 dBZ回波
    高度
    中气旋
    顶高
    2015-05-11深圳 F1 大于2580 J·kg-1 小于1000 m 钩状回波 较明显 低于5 km 低于4 km
    2005-07-30安徽灵壁[3] F3 约1200 J·kg-1 小于500 m S形回波 非常明显 约9 km 约11 km
    2009-07-16河南濮阳[20] F1 约2380 J·kg-1 小于1000 m 钩状回波 较明显 低于4 km 低于5 km
    DownLoad: Download CSV
  • [1]
    俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用.北京:气象出版社, 2006.
    [2]
    王宁, 王婷婷, 张硕, 等.东北冷涡背景下一次龙卷过程的观测分析.应用气象学报, 2014, 25(4):463-469. doi:  10.11898/1001-7313.20140409
    [3]
    俞小鼎, 郑媛媛, 廖玉芳, 等.一次伴随强烈龙卷的强降水超级单体风暴研究.大气科学, 2008, 32(3):508-522. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200803007.htm
    [4]
    吴芳芳, 俞小鼎, 王慧, 等.一次强降水超级单体风暴多普勒天气雷达特征.大气科学学报, 2010, 33(3):285-298. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201003003.htm
    [5]
    姚叶青, 俞小鼎, 郝莹, 等.两次强龙卷过程的环境背景场和多普勒雷达资料的对比分析.热带气象学报, 2007, 23(5):483-490. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200705008.htm
    [6]
    姚叶青, 郝莹, 张义军, 等.安徽龙卷发生的环境条件和临近预警.高原气象, 2012, 31(6):1721-1730. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201206027.htm
    [7]
    蒋汝庚.龙卷型强风暴——1995年4月19日洪奇沥龙卷风剖析.应用气象学报, 1997, 8(4):492-497. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970469&flag=1
    [8]
    何彩芬, 姚秀萍, 胡春蕾, 等.一次台风前部龙卷的多普勒天气雷达分析.应用气象学报, 2006, 17(3):370-375. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060363&flag=1
    [9]
    廖玉芳, 俞小鼎, 郭庆.一次强对流系列风暴个例的多普勒天气雷达资料分析.应用气象学报, 2003, 14(6):656-662. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030683&flag=1
    [10]
    刘宁微, 马雁军, 刘晓梅, 等.辽宁省2005年6月龙卷风过程的诊断与数值模拟.自然灾害学报, 2007, 16(5):84-90. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY200804107.htm
    [11]
    姚建群, 戴建华, 姚祖庆, 等.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi:  10.11898/1001-7313.20050615
    [12]
    李耀东, 刘健文, 高守亭.对流能量计算及强对流天气落区预报技术研究.应用气象学报, 2004, 15(1):10-20. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040102&flag=1
    [13]
    Evans J S, Doswell C A.Investigating Derecho and Supercell Proximity Soundings//Preprints, 21th Conf on Local Severe Storms.San Antonio:Amer Meteor Soc, 2002:635-638.
    [14]
    Erikn R.Refined supercell and tornado forecast parameters.Wea Forecasting, 2003, 18(3):530-535. doi:  10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2
    [15]
    Fujita T T.Tornadoes and downbursts in the context of generalized plantary scales.J Atmos Sci, 1981, 38(8):1511-1534. doi:  10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2
    [16]
    俞小鼎, 郑媛媛, 张爱民, 等.安徽一次强烈龙卷的多普勒天气雷达分析.高原气象, 2006, 25(5):914-924. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200605019.htm
    [17]
    俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [18]
    Rasmussen E N, Blanchard D O.A baseline climatology of sounding-derived supercell and tornado forecast parameters.Wea Forecasting, 1998, 13(4):1148-1164. doi:  10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2
    [19]
    Thompson R L, Edwards R, Hart J A.An Assessment of Supercell and Tornado Forecast Parameters with RUC-2 model Close Proximity Sounding//Preprints, 21st Conf on Severe Local Storm.San Antonio:Amer Meteor Soc, 2000:595-598.
    [20]
    李改琴, 许庆娥, 吴丽敏, 等.一次龙卷风天气的特征分析.气象, 2014, 40(5):628-636. doi:  10.7519/j.issn.1000-0526.2014.05.014
    [21]
    王秀明, 俞小鼎, 周小刚.中国东北龙卷研究:环境特征分析.气象学报, 2015, 73(3):425-441. doi:  10.11676/qxxb2015.031
    [22]
    Doswell C A.Severe convective storms:An overview.Severe Convective Storms.Meteor Monogr, 2001, 50:1-26.
    [23]
    Lemon L R.Severe Thunderstorms Radar Identification Techniques and Warnings Criteria.NOAA Tech Memo, NWS NSSFC-3, Kansa City, National Severe Strom Center, 1980.
    [24]
    范雯杰, 俞小鼎.中国龙卷的时空分布特征.气象, 2015, 41(7):793-805. doi:  10.7519/j.issn.1000-0526.2015.07.001
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (3429) PDF downloads(980) Cited by()
    • Received : 2015-11-05
    • Accepted : 2016-01-28
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint