Wang Fuxia, Yu Xiaoding, Pei Yujie, et al. Radar echo characteristics of thunderstorm gales and forecast key points in Hebei Province. J Appl Meteor Sci, 2016, 27(3): 342-351. DOI:  10.11898/1001-7313.20160309.
Citation: Wang Fuxia, Yu Xiaoding, Pei Yujie, et al. Radar echo characteristics of thunderstorm gales and forecast key points in Hebei Province. J Appl Meteor Sci, 2016, 27(3): 342-351. DOI:  10.11898/1001-7313.20160309.

Radar Echo Characteristics of Thunderstorm Gales and Forecast Key Points in Hebei Province

DOI: 10.11898/1001-7313.20160309
  • Received Date: 2015-08-20
  • Rev Recd Date: 2016-02-05
  • Publish Date: 2016-05-31
  • Using Xinle CINRAD-SA radar data at Shijiazhuang about 262 cases of thunderstorm from 2006 to 2008, radar echo characteristics of thunderstorm gales in Hebei Province are analyzed. It is found that the main characteristics can be divided into three categories, including the bow echo, band echo and bulk echo. The band echo accounts for 66.8%, the bow echo is 19.8%, and the isolated bulk cell echo is 13.4%. So the band echo is the main echo of thunderstorm gale. The main radar echo characteristics of thunderstorm gale are bow echo, gust front and radial velocity large value area, and all of them are thunderstorm gale warning indicators. Based on the above radar echo features, 66% thunderstorm gales can be forecasted. All bow echo thunderstorm gales can be forecasted, but they only account for 19.8%. Gust fronts can be observed only 16.8% of cases, and thunderstorm gales high speed value area can be observed 65.3% of cases. Therefore, the high speed value area is the most important characteristics of radar echoes. The formation rate of high speed value area is generally earlier than bow echo and gust front, so the thunderstorm gale can be forecasted earlier by using this characteristic.There are some limitations in the thunderstorm gale warning based on radar echoes. Sometimes the gust front echo will cause velocity less than 17 m/s, when the early warning may be false alarm. The gust front echo mainly concentrates in the boundary layer, and cannot be detected if it's far away from the radar. But when it's close to the radar, the gust front echo are difficult to identify solely due to clutter noise. Therefore, thunderstorms warning based on the gust front echo only will lead to missing alarms. For small scale isolated bulk echo, there are no significant differences between the reflectivity characteristic of gale, precipitation and thunderstorm. If the gamma scale convergence appears on the radial velocity, it's not the unique features to the thunderstorms gale. Therefore, the isolated blocky echoes cause thunderstorms more difficult to make the gale warning.At present, the radial velocity of the large value area is a warning indicator of the thunderstorm gale. Whether there is an exceptional case needs to be verified in the future.
  • Fig. 1  Base reflectivity (a) and base velocity (b) at 1.5° elevation from Xinle radar at 1936 BT 25 Jun 2008, base reflectivity (c) and base velocity (d) at 1.5° elevation from Xinle radar at 1833 BT 30 May 2006

    (the distance beteen adjacent ring is 100 km)

    Fig. 2  Base reflectivity (a) and base velocity (b) at 1.5° elevation form Beijing radar at 2100 BT 4 Aug 2013

    (the distance between adjacent ring is 100 km)

    Fig. 3  The advanced time statistics of bow echo and the largest velocity zones for bow echo posterios side

    Fig. 4  The advanced time statistics of gust front of banded echo and the largest velocity zones (no less than 17 m/s)

    Fig. 5  Base reflectivity (a) and base velocity (b) at 0.5° elevation form Xinle radar at 1630 BT 11 Jun 2008

    (the distance between adjacent ring is 100 km)

    Fig. 6  The advanced time statistics of the largest velocity zones (no less than 17 m/s) of banded echo posterior side

    Fig. 7  Base reflectivity (a) and base velocity (b) at 0.5° elevation from Xinle radar at 1848 BT 11 Jun 2008, base reflectivity (c) and base velocity (d) at 0.5° elevation from Xinle radar at 1418 BT 29 Jun 2007

    (the distance between adjacant ring is 100 km)

  • [1]
    余蓉, 张小玲, 李国平, 等.1971—2000年我国东部地区雷暴、冰雹、雷暴大风发生频率的变化.气象, 2012, 38(10):1207-1216. doi:  10.7519/j.issn.1000-0526.2012.10.006
    [2]
    李庆祥, 朱燕君, 熊元安.北京等6城市奥运期间不利天气的概率统计.应用气象学报, 2006, 17(增刊Ⅰ):42-47. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2006S1005.htm
    [3]
    丁青兰, 王令, 陈明轩, 等.近12年北京暖季对流天气的气候特征.暴雨灾害, 2007, 26(2):144-148. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200702009.htm
    [4]
    廖晓农.北京雷暴大风日环境特征分析.气候与环境研究, 2009, 14(1):54-62. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200901006.htm
    [5]
    廖晓农, 王华, 石增云, 等.北京地区雷暴大风日θe平均廓线特征.气象, 2004, 30(11):35-37. doi:  10.3969/j.issn.1000-0526.2004.11.008
    [6]
    秦丽, 李耀东, 高守亭.北京地区雷暴大风的天气-气候学特征研究.气候与环境研究, 2006, 11(6):754-762. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200606010.htm
    [7]
    樊李苗, 俞小鼎.中国短时强对流天气的若干环境参数特征分析.高原气象, 2013, 32(1):156-165. doi:  10.7522/j.issn.1000-0534.2012.00016
    [8]
    严仕尧, 李昀英, 齐琳琳, 等.华北产生雷暴大风的动力热力综合指标分析及应用.暴雨灾害, 2013, 32(1):17-23. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201301004.htm
    [9]
    俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [10]
    陈明轩, 俞小鼎, 谭晓光, 等.对流天气临近预报技术的发展与研究进展.应用气象学报, 2004, 15(6):754-766. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040693&flag=1
    [11]
    李国翠, 郭卫红, 王丽荣, 等.阵风锋在短时大风预报中的应用.气象, 2006, 32(8):36-42. doi:  10.7519/j.issn.1000-0526.2006.08.006
    [12]
    刘勇, 王楠, 刘黎平.陕西两次阵风锋的多普勒雷达和自动气象站资料分析.高原气象, 2007, 26(2):380-387. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200702020.htm
    [13]
    俞小鼎, 姚秀萍, 熊廷南, 等.多普勒天气雷达原理与业务应用.北京:气象出版社, 2006:163-169.
    [14]
    黄旋旋, 何彩芬, 徐迪峰, 等.5.6阵风锋过程形成机制探讨.气象, 2008, 34(7):20-26. doi:  10.7519/j.issn.1000-0526.2008.07.004
    [15]
    葛润生.阵风锋的雷达探测和研究.气象科学研究院院刊, 1986, 1(2):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198602000.htm
    [16]
    席宝珠, 俞小鼎, 孙力, 等.我国阵风锋类型与产生机制分析及其主观识别方法.气象, 2015, 41(2):133-142. doi:  10.3969/2014jms.0039
    [17]
    叶成志, 唐明晖, 陈红专, 等.2013年湖南首场致灾性强对流天气过程成因分析.暴雨灾害, 2013, 32(1):1-10. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201301001.htm
    [18]
    王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 18(1):42-49. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1
    [19]
    王福侠, 俞小鼎, 王宗敏, 等.河北暴雨的多普勒天气雷达径向速度特征.气象, 2014, 40(2):250-259. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201402008.htm
    [20]
    伍志方, 曾沁, 胡胜, 等.珠江三角洲大暴雨的多普勒特征及形成机制.自然灾害学报, 2009, 18(5):119-126. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200905017.htm
    [21]
    章国材.强对流天气分析与预报.北京:气象出版社, 2011:76-82.
    [22]
    陶岚, 袁招洪, 戴建华, 等.一次夜间弓形回波特征分析.气象学报, 2014, 72(2):220-236. doi:  10.11676/qxxb2014.027
    [23]
    王秀明, 俞小鼎, 周小刚, 等."6.3"区域致灾雷暴大风形成及维持原因分析.高原气象, 2012, 31(2):504-514. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202025.htm
    [24]
    王秀明, 周小刚, 俞小鼎.雷暴大风环境特征及其对风暴结构影响的对比研究.气象学报, 2013, 71(5):839-852. doi:  10.11676/qxxb2013.073
    [25]
    谢健标, 林良勋, 颜文胜, 等.广东2005年"3.22"强飑线天气过程分析.应用气象学报, 2007, 18(3):321-329. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070354&flag=1
    [26]
    姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-754. doi:  10.11898/1001-7313.20050615
    [27]
    慕熙昱, 党人庆, 陈秋萍, 等.一次飑线过程的雷达回波分析与数值模拟.应用气象学报, 2007, 18(1):42-49. doi:  10.11898/1001-7313.20070108
    [28]
    姚晨, 郑媛媛, 张雪晨.长生命史飑线在强、弱对流降水过程中的异同点分析.高原气象, 2012, 31(5):1366-1375. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201205020.htm
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3255) PDF downloads(740) Cited by()
    • Received : 2015-08-20
    • Accepted : 2016-02-05
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint