Liao Yihui, Lü Weitao, Qi Qi, et al. Simulation of various connecting patterns during the lightning connection process based on the stochastic lightning leader model. J Appl Meteor Sci, 2016, 27(3): 361-369. DOI:  10.11898/1001-7313.20160311.
Citation: Liao Yihui, Lü Weitao, Qi Qi, et al. Simulation of various connecting patterns during the lightning connection process based on the stochastic lightning leader model. J Appl Meteor Sci, 2016, 27(3): 361-369. DOI:  10.11898/1001-7313.20160311.

Simulation of Various Connecting Patterns During the Lightning Connection Process Based on the Stochastic Lightning Leader Model

DOI: 10.11898/1001-7313.20160311
  • Received Date: 2015-11-02
  • Rev Recd Date: 2016-02-22
  • Publish Date: 2016-05-31
  • Considering the observed fact that most upward connecting leaders (UCL) does not branch during downward negative cloud-to-ground (CG) strikes, the simulation scheme of upward positive leaders is modified based on the existing two-dimensional (2D) stochastic lightning model. In addition, two connecting patterns, i.e., the tip-to-tip connecting and the tip-to-lateral connecting (lateral strike) between the downward leader and the UCL are simulated during the process in which lightning strikes tall buildings. Sensitivity experiments are carried out on the connecting process between leaders during the process of lightning striking a tall building by altering the horizontal distance between the initiation point of the downward leader (at a height of 1000 m) and the tall building. Results indicate that when the value of d increases from 0 to 700 m, the probability of a lateral strike for the UCL generally exhibits a trend of first increasing and then decreasing. As the value of d increases, the length of the UCL exhibits an increasing trend, and the ratio of the part of the UCL above the connecting point accounting for the entire length of the UCL upon the lateral strike generally exhibits an increasing trend. The probability of each grounding position is under the influence of the horizontal distance. The UCL initiating from the top of tall structures is longer than that initiating from the ground or the side surface of tall structures. Furthermore, tall structures with different heights are also investigated.
  • Fig. 1  Schematic diagram for the development of the leader

    Fig. 2  The building and the selection of initiation positions for the downward leader

    Fig. 3  Different connection behavior at different grounding points

    Fig. 4  Changes of grounding probability at different locations with d(a) and changes of the average length of UCL with d(b)

    Fig. 5  Simulation results of the tip-to-lateral connection behavior with different d

    Fig. 6  Changes of probability of tip-to-lateral connection behavior with d(a) and changes of R with d(b)

    (R is the average ratio of the length between connection point to the tip of UCL and the whole length of UCL)

    Table  1  Grounding probability at different locations

    d/m 地面/% 高建筑物侧面/% 高建筑物顶面/%
    0 0 0 100
    100 0 0 100
    200 0 1 99
    300 0 4 96
    400 4 23 74
    500 25 34 41
    600 54 31 15
    700 84 14 2
    DownLoad: Download CSV

    Table  2  The length of UCL initiating from different locations

    d/m 地面 建筑物侧面 建筑物顶面
    范围/m 平均值/m 范围/m 平均值/m 范围/m 平均值/m
    0 44~400 189
    100 58~376 187
    200 10~24 16 118~428 198
    300 24~30 16 134~464 211
    400 10~38 18 10~44 18 104~516 245
    500 10~58 19 10~64 21 142~569 276
    600 10~68 18 10~77 20 157~519 296
    700 10~72 18 10~58 16 197~494 317
    DownLoad: Download CSV

    Table  3  The length of UCL initiating from the top of the tall structure

    d/m 头部连接的UCL 受侧击的UCL
    范围/m 平均值/m 范围/m 平均值/m
    0 44~288 183 74~400 199
    100 58~356 179 118~376 198
    200 128~428 191 118~390 207
    300 134~373 190 134~464 229
    400 104~516 239 132~436 251
    500 148~508 265 142~569 285
    600 157~490 285 187~519 306
    700 197~494 307 188~450 320
    DownLoad: Download CSV

    Table  4  Simulation results of tip-to-lateral connection as the value of d changes

    d/m Nt Nl P/% R Lu/m Lc/m
    0 400 136 35 0.13 199 27
    100 400 165 41 0.17 198 35
    200 396 175 44 0.18 207 42
    300 384 203 53 0.26 229 66
    400 295 149 51 0.26 251 71
    500 165 95 58 0.34 285 101
    600 59 31 53 0.37 306 110
    700 7 2 29 0.49 320 156
      注:Nt为接地点在建筑物顶面的次数,Nl为UCL受侧击的次数,P为UCL受侧击的概率, R为UCL连接点以上的长度与UCL总长度比值的平均值,Lu为UCL平均长度,Lc为连接点到UCL头部的长度。
    DownLoad: Download CSV
  • [1]
    马明, 吕伟涛, 张义军, 等.1997—2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.11898/1001-7313.20080402
    [2]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [3]
    Dwyer J R, Uman M A.The physics of lightning.Physics Reports, 2014, 534(4):147-241. doi:  10.1016/j.physrep.2013.09.004
    [4]
    Lu W T, Chen L W, Ma Y, et al.Lightning attachment process involving connecting of the downward negative leader to the lateral surface of the upward connecting leader.Geophys Res Lett, 2013, 40(20):5531-5535. doi:  10.1002/2013GL058060
    [5]
    Gao Y, Lu W T, Ma Y, et al.Three-dimensional propagation characteristics of the upward connecting leaders in six negative tall-object flashes in Guangzhou.Atmos Res, 2014, 149:193-203. doi:  10.1016/j.atmosres.2014.06.008
    [6]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [7]
    Lu W T, Ma Y, Chen L W, et al.Four Ways of How Downward and Upward Leaders Make Connecting During the Lightning Attachment Process.XV International Conference on Atmospheric Electricity, 2014.
    [8]
    谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. doi:  10.11898/1001-7313.20150209
    [9]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [10]
    张义军, 吕伟涛, 郑栋, 等.负地闪先导-回击过程的光学观测和分析.高电压技术, 2008, 34(10):2022-2029. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ200810002.htm
    [11]
    李丹, 张义军, 吕伟涛.风力发电机叶片姿态与雷击概率关系模拟分析.应用气象学报, 2013, 24(5):585-594. doi:  10.11898/1001-7313.20130508
    [12]
    Peesapati V, Cotton I.Lightning Protection of Wind Turbines-A Comparison of Real Lightning Strike Data and Finite Element Lightning Attachment Analysis.Sustainable Power Generation and Supply, 2009:1-8. https://www.researchgate.net/publication/224087708_Lightning_protection_of_wind_turbines_-_A_comparison_of_real_lightning_strike_data_and_finite_element_lightning_attachment_analysis
    [13]
    Riousset J A.Three-dimensional fractal modeling of intracloud lightning discharge in a New Mexico thunderstorm and comparison with lightning mapping observations.J Geophys Res, 2007, 112(15203):1-17. http://www.academia.edu/905177/Three-dimensional_fractal_modeling_of_intracloud_lightning_discharge_in_a_New_Mexico_thunderstorm_and_comparison_with_lightning_mapping_observations
    [14]
    Wiesmann H J, Zeller H R.A fractal model of dielectric breakdown and prebreakdown in solid dielectrics.Appl Phys, 1986, 60(5):1770-1773. doi:  10.1063/1.337219
    [15]
    Femia N, Niemeyer L, Tucci V.Fractal characteristics of electrical discharges:Experiments and simulation.Phys D Appl Phys, 1993, 24(6):615-622. https://www.researchgate.net/publication/221963723_Fractal_characteristics_of_electrical_discharges_Experiments_and_simulation
    [16]
    Popov N A.Spatial structure of the braching streamer channel in a corona discharge.Plasma Physics Reports, 2002, 28(7):615-622. doi:  10.1134/1.1494061
    [17]
    Perera M D N, Sonnadara D U J.Research Article Fractal nature of simulated lightning channels.Sri Lankan Journal of Physics, 2012, 13(2):9-25.
    [18]
    王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:58-66.
    [19]
    Vladislav M, Lothar H R.Evaluation of the Lightning Protection System at the WSR-88D Radar Sites.National Oceanic and Atmospheric Administration Final Report, 2001:1-53.
    [20]
    Wang D, Takagi N, Watanabe T, et al.Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower.Geophys Res Lett, 2008, 35, L02803, doi: 10.029/2007GL032136.22.
    [21]
    Becerra M, Cooray V.On the velocity of positive connecting leaders associated with negative downward lightning leaders.Geophys Res Lett, 2008, 3(5):1-5. http://adsabs.harvard.edu/abs/2008GeoRL..35.2801B
    [22]
    Mousa A M.Validity of the Collection Volume Method/Field Intensification Method for the Placement of Lightning rods on Buildings.Proc of the 26th International Conference on Lightning Protection, 2002:1-6.
    [23]
    Lu W T, Chen L W, Zhang Y, et al.Characteristics of unconnected upward leaders initiated from tall structures observed in Guangzhou.J Geophys Res:Atmosphere, 2012, 117(19):1984-2012. https://www.researchgate.net/publication/258662982_Characteristics_of_unconnected_upward_leaders_initiated_from_tall_structures_observed_in_Guangzhou
    [24]
    张义军, 吕伟涛, 张阳, 等.广州地区地闪放电过程的观测及其特征分析.高电压技术, 2013, 39(2):383-392. http://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201302020.htm
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(4)

    Article views (3529) PDF downloads(520) Cited by()
    • Received : 2015-11-02
    • Accepted : 2016-02-22
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint