Gu Chengming, Wang Yunfeng, Zhang Xiaohui, et al. Effects of cloud parameter on brightness temperature computation in microwave band. J Appl Meteor Sci, 2016, 27(3): 380-384. DOI:  10.11898/1001-7313.20160313.
Citation: Gu Chengming, Wang Yunfeng, Zhang Xiaohui, et al. Effects of cloud parameter on brightness temperature computation in microwave band. J Appl Meteor Sci, 2016, 27(3): 380-384. DOI:  10.11898/1001-7313.20160313.

Effects of Cloud Parameter on Brightness Temperature Computation in Microwave Band

DOI: 10.11898/1001-7313.20160313
  • Received Date: 2015-09-11
  • Rev Recd Date: 2016-02-23
  • Publish Date: 2016-05-31
  • The CRTM fast radiative transfer model is utilized to simulate channel brightness temperature of NOAA-K/AMSU-A. The research focuses on effects of cloud particles type, height and thickness on simulation of each channel brightness temperature. Results show that when there exists water cloud and rain cloud, the corresponding brightness temperature is larger; when there exists ice cloud, snow cloud, hail cloud or graupel cloud, the change of corresponding brightness temperature isn't very obvious. Effects of cloud on channel brightness temperature depend on the configuration of weighting function peaks and cloud top height. When cloud exists at multiple heights, if topmost cloud is thicker (2 km), brightness temperature value of corresponding channels depends on the highest cloud. When the cloud is relative thin, brightness temperature of channels lower or slightly higher than cloud top changes obviously. For those channels far higher than cloud top, their brightness temperatures are not sensitive to cloud thickness change.
  • Fig. 1  American standard atmospheric profiles

    Fig. 2  Brightness temperature of the first channel with different cloud types when low cloud exists

    Fig. 3  Channel brightness temperature of different cloud height

    Fig. 4  Upward radiance of the first channel of different cloud height (a) three-kind cloud and in clear sky, (b) three-kind cloud in the same time with high cloud only

    Fig. 5  Brightness temperature deviation of different thickness of cloud with no cloud given the same cloud bottom

  • [1]
    董佩明, 王海军, 韩威, 等.水物质对云雨区卫星微波观测模拟影响.应用气象学报, 2009, 20(6):682-691. doi:  10.11898/1001-7313.20090605
    [2]
    任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):137-146. doi:  10.11898/1001-7313.20090202
    [3]
    王海军, 周睿, 严冬, 等.水物质辐射效应对卫星观测模拟误差的影响分析.气象与减灾研究, 2009, 32(1):57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200901010.htm
    [4]
    刘硕松, 董佩明, 韩威, 张文军, 等.RTTOV和CRTM对"罗莎"台风卫星微波观测的模拟研究与比较.气象学报, 2012, 70(3):585-597. doi:  10.11676/qxxb2012.048
    [5]
    车云飞, 马舒庆, 杨玲, 等.云对地基微波辐射计反演湿度廓线的影响.应用气象学报, 2015, 26(2):193-202. doi:  10.11898/1001-7313.20150207
    [6]
    姚展予, 李万彪, 朱元竞, 等.用TRMM卫星微波成像仪遥感云中液态水.应用气象学报, 2003, 14(增刊Ⅰ):19-25. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2003S1002.htm
    [7]
    Nerry F, Labed J, Stoll M P.Spectral properties of land surface in the thermal infrared, Ⅰ.laboratory measurements of absolute spectral emissivity signatures.J Geophys Res, 1999, 95(B5):7027-7044. doi:  10.1007/978-94-007-6639-6_1
    [8]
    Hook S J, Gabell G A.A comparison of techniques for extracting emissivity information from thermal infrared data for geological studies.Remote Sens Environ, 1992, 42:123-135. doi:  10.1016/0034-4257(92)90096-3
    [9]
    Salisbury J W, Daria D M.Emissivity of terrestrial materials in the 8~14 atmospheric windows.Remote Sens Environ, 1992, 42:83-110. doi:  10.1016/0034-4257(92)90092-X
    [10]
    Rubio E, Caselles V, Badenas C.Emissivity measurements of several soils and vegetation types in the 8~14 wave band:Analysis of two field methods.Remote Sens Environ, 1997, 59:490-521. doi:  10.1016/S0034-4257(96)00123-X
    [11]
    谷松岩, 邱红, 冉茂农, 等.用星载先进微波探测器 (AMSU) 资料开展区域地表洪涝分类监测.应用气象学报, 2003, 14(1):8-16. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030102&flag=1
    [12]
    Weng F, Han Y, Paul Van Delst, et al.JCSDA Community Radiative Transfer Model (CRTM) Proceedings of 14th International TOVS Study Conference.Beijing, 2005.
    [13]
    Dong P, Liu Z, Xue J, et al.The Use of ATOVS Microwave Data in the Grapes-3Dvar System Proceedings of the 14th International TOVS Study Conference.Beijing, 2005.
    [14]
    薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):602-609. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1
    [15]
    Petch J C.Improved radiative transfer calculations from information provided by bulk microphysical schemes.J Atmos Sci, 1998, 49:1846-1858. https://www.researchgate.net/publication/234136734_Improved_Radiative_Transfer_Calculations_from_Information_Provided_by_Bulk_Microphysical_Schemes
  • 加载中
  • -->

Catalog

    Figures(5)

    Article views (2772) PDF downloads(805) Cited by()
    • Received : 2015-09-11
    • Accepted : 2016-02-23
    • Published : 2016-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint