Qu Zhenjiang, Zhou Guangsheng, Wei Qinping. Meteorological disaster index and risk assessment of frost injury during apple florescence. J Appl Meteor Sci, 2016, 27(4): 385-395. DOI:  10.11898/1001-7313.20160401.
Citation: Qu Zhenjiang, Zhou Guangsheng, Wei Qinping. Meteorological disaster index and risk assessment of frost injury during apple florescence. J Appl Meteor Sci, 2016, 27(4): 385-395. DOI:  10.11898/1001-7313.20160401.

Meteorological Disaster Index and Risk Assessment of Frost Injury During Apple Florescence

DOI: 10.11898/1001-7313.20160401
  • Received Date: 2016-03-24
  • Rev Recd Date: 2016-05-12
  • Publish Date: 2016-07-31
  • Frost injury during the florescence is one of the most serious meteorological disasters affecting the production and quality of apple. In temperate regions, effects of frost damage on deciduous fruit trees during florescence exceed effects of winter freeze. The risk of frost injury in the apple florescence depends on the developmental stage and disaster-causing factors. The minimum temperatures or frost days are usually adopted as disaster-causing factors, but single index cannot reflect combined effects of meteorological factors on frost injury.The disaster exposure index and the dominant disaster-causing factors are determined based on the geographical distribution of frost injury during the apple florescence, meteorological data, together with the maximum entropy (MaxEnt) model and ArcGIS spatial analysis technique. An assessment is carried out on the main cultivated area using meteorological data from 2084 meteorological stations during 1981-2013. Results indicate that the frost injury occurs when the effective accumulated temperature (daily maximum air temperature is no less than 6℃) reaches 420-550℃·d before flower-beginning. The dominant disaster-causing factors and their thresholds to the frost injury in influence descending order are listed as follows: The maximum diurnal range of temperature (no less than 22℃), the extreme minimum temperature (no more than-2℃), the precipitation (no more than 5 mm) and the accumulated daily minimum temperature below 0℃ (no more than-14℃·d) in processes of strong cold air. The higher risk areas include northern Xinjiang, western and northern Loess Plateau, especially the plateau area of the western Sichuan, while risks in areas around the Bohai Bay and the Old Course of the Yellow River are lower. The distribution of risk areas are related with the apple phenophase and routes of cold air. The disaster affected degree also varies according to different cultivars.
  • Fig. 1  The study area and geographical distribution of weather stations and frost injury in the apple florescence

    Fig. 2  Validity of the first flowering date of apple in the study area simulated by the exposure risk indices

    Fig. 3  Risk distribution of frost injury in the apple florescence in China

    Table  1  Potential climate factors affecting the distribution of frost injury in the apple florescence

    因子分类 表征意义 潜在气候因子 引用文献
    暴露性风险
    影响因子
    Ⅰ表征果树生
    长发育阶段
    花前日平均气温大于等于3℃的有效积温 (∑Ta3/(℃·d)) [27-28, 31]
    花前日平均气温大于等于5℃的有效积温 (∑Ta5/(℃·d)) [27-28, 30]
    花前日最高气温大于等于6℃有效积温 (∑Tm/(℃·d)) [27, 29-30]
    致灾风险
    影响因子
    Ⅰ降温过程空
    气温度变化
    日平均气温 (T/℃) [11, 13]
    极端最低气温 (Tem/℃) [1-3, 5-6, 8-10, 32, 33]
    最大日较差 (Tmr/℃) [8, 11, 32, 34, 35]
    日最低气温小于等于0℃积温 (∑T0/(℃·d)) [13, 16, 35-36]
    Ⅱ降温过程地
    表温度变化
    日平均最低地表温度 (Lst/℃) [15, 32]
    极端最低地表温度 (Lstm/℃) [15, 32]
    日最低地温小于等于0℃积温 (∑Lst0/(℃·d)) [14]
    Ⅲ其他环境因子 过程累积降水量 (R/mm) [12-13, 37]
    过程平均空气相对湿度 (f/%) [12-13, 37]
    过程平均风速 (V/(m·s-1)) [1, 13]
    DownLoad: Download CSV

    Table  2  Percent contribution and permutation importance of dominant climate factors affecting the distribution of frost injury in the apple florescence

    因子分类 主导因子 贡献率/% 累积贡献率/% 置换重要性/%
    致灾气象因子 过程最大日较差 (Tmr/℃) 28.7 28.7 9.5
    过程极端最低气温 (Tem/℃) 26.2 54.9 38.3
    过程累积降水量 (R/mm) 20.8 75.7 10.3
    日最低气温小于等于0℃积温 (∑T0/(℃·d)) 12.1 87.8 1.1
    暴露风险因子 花前日最高气温大于等于6℃有效积温 (∑Tm/(℃·d)) 12.1 99.9 40.7
    DownLoad: Download CSV

    Table  3  Threshold range of meteorological factors in accordance with the risk probability classification of frost injury in the apple florescence

    致灾因子 高风险 中等风险 低风险
    过程最大日较差 (Tmr/℃) Tmr≥22 18≤Tmr<22 15≤Tmr<18
    过程极端最低气温 (Tem/℃) Tem≤-2 -2<Tem≤1 1<Tem≤4
    过程累积降水量 (R/mm) R≤5 5<R≤20 20<R≤50
    日最低气温小于等于0℃积温 (∑T0/(℃·d)) T≤-14 -14<∑T≤-8 -8<∑T≤-3
    DownLoad: Download CSV

    Table  4  Comparative analysis of simulated and actual frost injury in the apple florescence

    主产区 省份 验证点 地理位置 海拔/m 模拟结果一致率/%
    黄土高原产区 陕西 洛川 35°49′N,109°30′E 1159.8 85
    山西 临猗 35°08′N,110°47′E 387.9 90
    甘肃 静宁 35°31′N,105°43′E 1656.4 80
    宁夏 吴忠 37°59′N,106°11′E 1128.8 85
    环渤海湾产区 山东 栖霞 37°18′N,120°50′E 171.5 75
    辽宁 普兰店 39°24′N,121°58′E 31.5 75
    河北 深州 38°00′N,115°33′E 26.1 85
    黄河故道产区 河南 灵宝 34°32′N,110°53′E 390.4 75
    江苏 丰县 34°41′N,116°35′E 40.1 80
    西南高地产区 云南 昭阳 27°21′N,103°43′E 1949.5 75
    四川 小金 31°00′N,102°21′E 2369.2 60
    四川 盐源 27°26′N,101°31′E 2545.0 65
    新疆产区 新疆 阿克苏 41°10′N,80°14′E 1103.8 75
    新疆 伊宁 43°57′N,81°20′E 662.5 80
    DownLoad: Download CSV
  • [1]
    Modlibowska I.Frost injury to apples.Hort Sci, 1946, 22(1):46-50. http://msue.anr.msu.edu/news/freeze_damage_depends_on_tree_fruit_stage_of_development
    [2]
    Rodrigo J.Spring frosts in deciduous fruit trees-morphological damage and flower hardiness.Hort Sci, 2000, 85(3):155-173. doi:  10.1016/S0304-4238(99)00150-8
    [3]
    屈振江, 刘瑞芳, 郭兆夏, 等.陕西省苹果花期冻害风险评估及预测技术研究.自然灾害学报, 2013, 22(1):219-225. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201301030.htm
    [4]
    Augspurger C K.Reconstructing patterns of temperature, phenology, and frost damage over 124 years:Spring damage risk is increasing.Ecology, 2013, 94(1):41-50. doi:  10.1890/12-0200.1
    [5]
    Farajzadeh M, Rahimi M, Kamali G A, et al.Modelling apple tree bud burst time and frost risk in Iran.Meteorological Applications, 2010, 17(1):45-52. http://www.academia.edu/11661260/Modelling_apple_tree_bud_burst_time_and_frost_risk_in_Iran
    [6]
    Eccel E, Rea R, Caffarra A, et al.Risk of spring frost to apple production under future climate scenarios:The role of phenological acclimation.International Journal of Biometeorology, 2009, 53(3):273-286. doi:  10.1007/s00484-009-0213-8
    [7]
    Dai J, Wang H, Ge Q.The decreasing spring frost risks during the flowering period for woody plants in temperate area of eastern China over past 50 years.Journal of Geographical Sciences, 2013, 23(4):641-652. doi:  10.1007/s11442-013-1034-6
    [8]
    高菊红. 基于GIS的山东省苹果花期冻害风险分析与区划. 济南: 山东农业大学, 2014.
    [9]
    王莹, 李琳琳, 张晓月, 等.辽宁省苹果花期冻害时空分布规律及其风险区划.江苏农业科学, 2015, 43(6):376-379. http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201506121.htm
    [10]
    中国气象局.QX/T 88-2008(作物霜冻害等级).北京:气象出版社, 2008.
    [11]
    Rigby J R, Porporato A.Spring frost risk in a changing climate.Geophys Res Lett, 2008, 35(12):150-152. doi:  10.1139/cjfr-2014-0302
    [12]
    Modlibowska I.Effect of soil moisture on frost resistance of apple blossom including some observations on "ghost" and"parachute" blossoms.Hort Sci, 1961, 36(3):186-196.
    [13]
    Charrier G, Ngao J, Saudreau M, et al.Effects of environmental factors and management practices on microclimate, winter physiology, and frost resistance in trees.Frontiers in Plant Science, 2015, 6:259. https://www.researchgate.net/publication/276126060_Effects_of_environmental_factors_and_management_practices_on_microclimate_winter_physiology_and_frost_resistance_in_trees
    [14]
    杨爱萍, 杜筱玲, 王保生, 等.江西省多气象要素的柑橘冻害指标.应用气象学报, 2013, 24(2):248-256. doi:  10.11898/1001-7313.20130213
    [15]
    张雪芬, 郑有飞, 王春乙, 等.冬小麦晚霜冻害时空分布与多时间尺度变化规律分析.气象学报, 2009, 67(2):321-330. doi:  10.11676/qxxb2009.032
    [16]
    程德瑜.危害积温及其在作物灾害中的应用.中国农业气象, 1988, 9(1):51-53. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY198801017.htm
    [17]
    Phillips S J, Anderson R P, Schapire R E.Maximum entropy modeling of species geographic distributions.Ecological Modelling, 2006, 190(3):231-259. http://www.doc88.com/p-982701226774.html
    [18]
    Phillips S J, Dudík M.Modeling of species distributions with MaxEnt:New extensions and a comprehensive evaluation.Ecography, 2008, 31(2):161-175. doi:  10.1111/j.0906-7590.2008.5203.x
    [19]
    Parisien M A, Moritz M A.Environmental controls on the distribution of wildfire at multiple spatial scales.Ecological Monographs, 2009, 79(1):127-154. doi:  10.1890/07-1289.1
    [20]
    农业部.苹果优势区域布局规划 (2008—2015年).农业工程技术 (农产品加工业), 2010(3):16-17. http://www.cnki.com.cn/Article/CJFDTOTAL-YZZZ200902044.htm
    [21]
    国家统计局.中国农业统计年鉴2014.北京:中国统计出版社, 2014.
    [22]
    中国气象局.中国气象灾害年鉴 (2013).北京:气象出版社, 2014.
    [23]
    姜艳, 赵秀兰.2013年春季气候对农业生产的影响.中国农业气象, 2013, 34(3):374-376. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201303020.htm
    [24]
    刘新安, 于贵瑞, 范辽生, 等.中国陆地生态信息空间化技术研究 (Ⅲ)——温度, 降水等气候要素.自然资源学报, 2004, 19(6):818-825. doi:  10.11849/zrzyxb.2004.06.018
    [25]
    陈家金, 李丽纯, 林晶, 等.福建省枇杷气象灾害综合风险评估.应用气象学报, 2014, 25(2):232-241. doi:  10.11898/1001-7313.20140213
    [26]
    Chmielewski F M, Blümel K, Henniges Y, et al.Phenological models for the beginning of apple blossom in Germany.Meteorologische Zeitschrift, 2011, 20(5):487-496. doi:  10.1127/0941-2948/2011/0258
    [27]
    青木二郎. 苹果的研究. 曲译洲, 刘汝诚, 译. 北京: 农业出版社, 1984.
    [28]
    陆秋农.我国苹果的分布区划与生态因子.中国农业科学, 1980, 13(1):46-51. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK198001005.htm
    [29]
    孟秀美.苹果花期积温与日较差.中国果树, 1988(1):40-41. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGS198801016.htm
    [30]
    果树栽培学总论. 北京: 中国农业出版社, 1997.
    [31]
    杨秀武.苹果生物学零度和花期有效积温的研究.果树科学, 1995, 12(2):98-100. http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK199502008.htm
    [32]
    李保国, 邓洪云, 陈绍文.山地果园晚霜期温度调查.河北果树, 1995(1):1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-HBGS501.000.htm
    [33]
    王静, 张晓煜, 杨洋, 等.宁夏主要果树花器官及幼果霜冻临界温度比较研究.北方园艺, 2015(7):9-13. http://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201507003.htm
    [34]
    何维勋, 冯玉香.解冻速率对作物霜冻害的影响.应用气象学报, 1993, 4(4):440-445. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19930475&flag=1
    [35]
    杨建民, 周怀军.果树霜冻害研究进展.河北农业大学学报, 2000, 23(3):54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-CULT200003012.htm
    [36]
    孙芳娟, 张莹, 查养良, 等.苹果花期霜冻分析与防御对策.北方园艺, 2013(23):217-218. http://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201323066.htm
    [37]
    Rogers W S, Modlibowska I.Low temperature injury to fruit blossom.Ⅲ.Water sprinkling as an anti-frost measure.Annual Report East Malling Research Station, 1950(33):63-80.
    [38]
    叶殿秀, 张勇.1961—2007年我国霜冻变化特征.应用气象学报, 2008, 19(6):661-665. doi:  10.11898/1001-7313.20080604
    [39]
    Linkosalo T, Lappalainen H K, Hari P.A comparison of phonological models of leaf bud burst and flowering of boreal trees using independent observations.Tree Physiology, 2008, 28(12):1873-1882. doi:  10.1093/treephys/28.12.1873
    [40]
    王遵娅, 丁一汇.近53年中国寒潮的变化特征及其可能原因.大气科学, 2006, 30(6):14-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200606001.htm
    [41]
    高青云.坝州北部春季寒潮连阴雪的周期性分析.高原气象, 1992, 11(3):328-329. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199203012.htm
    [42]
    李星敏, 柏秦凤, 朱琳.气候变化对陕西苹果生长适宜性影响.应用气象学报, 2011, 22(2):241-248. doi:  10.11898/1001-7313.20110213
    [43]
    张养才, 霍治国.中国柑桔周期性冻害问题的研究.应用气象学报, 1991, 2(1):52-58. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910106&flag=1
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(4)

    Article views (5029) PDF downloads(628) Cited by()
    • Received : 2016-03-24
    • Accepted : 2016-05-12
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint