Qin Pengcheng, Liu Min, Wan Suqin, et al. Methods for yield forecast based on crop model with incomplete weather observations. J Appl Meteor Sci, 2016, 27(4): 407-416. DOI:  10.11898/1001-7313.20160403.
Citation: Qin Pengcheng, Liu Min, Wan Suqin, et al. Methods for yield forecast based on crop model with incomplete weather observations. J Appl Meteor Sci, 2016, 27(4): 407-416. DOI:  10.11898/1001-7313.20160403.

Methods for Yield Forecast Based on Crop Model with Incomplete Weather Observations

DOI: 10.11898/1001-7313.20160403
  • Received Date: 2015-11-23
  • Rev Recd Date: 2016-05-30
  • Publish Date: 2016-07-31
  • Crop simulation models are important tools for identifying climate-crop relationships as well as for yield prediction, while complete daily weather data for whole growing season is required for running crop model, which cannot be satisfied only by weather observations in the real-time operation. Formal studies have generally used averages of daily weather calculated from the historical weather database as replacement, which may destroy its temporal distribution, and thus introduce another source of bias. Aiming at preparing meteorological data after the forecasting day that required by the crop model in the real-time yield forecasting operation, the climate analogues methodology is proposed, which can generate new climate series for the desired period from history observations that with similar climates across space and time, based on a distance metric such as Euclidean, and the new proposed methodology is tested with the CERES-Rice model for its predictability and error distribution, comparing with a general arithmetic mean method. Results show that rice yield is sensitivity to meteorological conditions during two months before maturity, yield forecasting with CERES-Rice model driven by weather data at two-month lead-time leads to a more than 60% prediction probability with an error no more than 5%, and such predictability increases steadily with weather observations updated, showing considerable potential for operational application. Considering there is no priori knowledge on the climate trend for the remainder growing season, using a multi-year mean weather data instead, there is a 60% prediction probability when forecasted at two months before maturity and a 70% prediction probability one month before, however, obvious systematic overestimate is observed, and there exist systematic errors among different decades using 30-year means due to the climate trend under global warning, by using the latest 10-year or 5-year means, the decadal systematic errors decrease while the predictability increase for the poor ability in representing climate variability among years. Finally, using the historical analogue approach that generating downscaled daily weather data from historical observations, the prediction probabilities increase slightly, while the systematic errors reduce considerably compared with that of using the general arithmetic average approach, in addition, the historical analogues approach allows to include climate trend for the upcoming growing season, and by doing so, the predictability increases to more than 80% at two month in advance, much higher than that with multi-year mean. It is concluded that the analogue approach has great potential in bridging the gap between crop model and climate forecasting.
  • Fig. 1  Flow diagram of yield forecast based on crop model with incomplete weather observations

    Fig. 2  Simulated final yield at different forecast day for 1981-2010

    (different color represents result of different year)

    Fig. 3  Relative yield bias between simulated yield at different forecast day and that with weather observations for 1981-2010

    (different color represents different year)

    Fig. 4  Predictability of yield at different forecast day at 95% confidence level

    Fig. 5  Characteristics of frequency distribution of yield bias

    Fig. 6  Characteristics of yield bias among different decades

    Fig. 7  Yield bias among different decades using synthetic weather data from latest 10-year mean (a) and 5-year mean (b)

    Fig. 8  Predictability of yield at different forecast day at 95% confidence level using synthetic weather data from latest 10-year mean (a) and 5-year mean (b)

    Fig. 9  Bias between observed climate variables and those generated by the historical analogue approach at different forecast day

    Table  1  Methodology for generating weather data from the initial forecast day to maturity

    处理方案 基准值
    近30年平均 近10年平均 近5年平均 气候预测
    平均值处理 Mean30 Meanb10 Meanb5
    历史相似类比 Ana30 Anab10 Anab5 Anab0
    DownLoad: Download CSV

    Table  2  Predictability and error distribution of different methodology

    气象资料
    处理方案
    不同起报时间 (移栽后日数/d) 可预报性 误差分布特征
    0 10 20 30 40 50 60 70 80 90 100 110 平均相对
    偏差/%
    偏度
    系数
    年际趋
    势/%
    Mean30 0.55 0.55 0.55 0.56 0.59 0.60 0.63 0.67 0.74 0.79 0.88 0.99 3.53 0.86 0.26
    Meanb10 0.46 0.46 0.46 0.48 0.51 0.53 0.56 0.60 0.69 0.74 0.87 0.99 4.01 0.63 0.08
    Meanb5 0.51 0.51 0.52 0.53 0.57 0.57 0.60 0.64 0.72 0.75 0.86 0.98 3.70 0.53 0.05
    Anam30 0.54 0.54 0.54 0.55 0.59 0.58 0.63 0.67 0.71 0.74 0.82 0.94 3.63 0.54 0.27
    Anab10 0.56 0.58 0.56 0.57 0.60 0.60 0.61 0.67 0.71 0.73 0.82 0.94 3.56 0.45 0.07
    Anab5 0.59 0.59 0.59 0.61 0.62 0.63 0.64 0.67 0.72 0.74 0.83 0.94 3.44 0.32 0.04
    Anab0 0.77 0.79 0.81 0.81 0.83 0.83 0.86 0.87 0.87 0.89 0.92 0.97 2.28 0.20 0.03
    DownLoad: Download CSV
  • [1]
    王石立, 马玉平.作物生长模拟模型在我国农业气象业务中的应用研究进展及思考.气象, 2008, 34(6):3-10. doi:  10.7519/j.issn.1000-0526.2008.06.001
    [2]
    秦鹏程, 姚凤梅, 曹秀霞, 等.利用作物模型研究气候变化对农业影响的发展过程.中国农业气象, 2011, 32(2):240-245. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201102016.htm
    [3]
    Yu Q, Li L, Luo Q, et al.Year patterns of climate impact on wheat yields.International Journal of Climatology, 2014, 34(2):518-528. doi:  10.1002/joc.2014.34.issue-2
    [4]
    Zhang Y, Zhao Y, Chen S, et al.Prediction of maize yield response to climate change with climate and crop model uncertainties.Journal of Applied Meteorology and Climatology, 2015, 54(4):785-794. doi:  10.1175/JAMC-D-14-0147.1
    [5]
    郭建平.气候变化对中国农业生产的影响研究进展.应用气象学报, 2015, 26(1):1-11. doi:  10.11898/1001-7313.20150101
    [6]
    Duchon C E.Corn yield prediction using climatology.J Climate Appl Meteor, 1986, 25(5):581-590. doi:  10.1175/1520-0450(1986)025<0581:CYPUC>2.0.CO;2
    [7]
    Lawless C, Semenov M A.Assessing lead-time for predicting wheat growth using a crop simulation model.Agricultural and Forest Meteorology, 2005, 135(1-4):302-313. doi:  10.1016/j.agrformet.2006.01.002
    [8]
    Marletto V, Ventura F, Fontana G, et al.Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model.Agricultural and Forest Meteorology, 2007, 147(1-2):71-79. doi:  10.1016/j.agrformet.2007.07.003
    [9]
    de Wit A J W, van Diepen C A.Crop model data assimilation with the Ensemble Kalman filter for improving regional crop yield forecasts.Agricultural and Forest Meteorology, 2007, 146(1-2):38-56. doi:  10.1016/j.agrformet.2007.05.004
    [10]
    陈思宁, 赵艳霞, 申双和, 等.基于PyWOFOST作物模型的东北玉米估产及精度评估.中国农业科学, 2013, 46(14):2880-2893. doi:  10.3864/j.issn.0578-1752.2013.14.004
    [11]
    帅细强, 王石立, 马玉平, 等.基于水稻生长模型的气象影响评价和产量动态预测.应用气象学报, 2008, 19(1):71-81. doi:  10.11898/1001-7313.20080112
    [12]
    帅细强, 陆魁东, 黄晚华.不同方法在湖南省早稻产量动态预报中的比较.应用气象学报, 2015, 26(1):103-111. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150111&flag=1
    [13]
    张淑杰, 张玉书, 王石立, 等.基于作物生长模拟模式的玉米产量预报方法研究.安徽农业科学, 2009, 37(36):17914-17917. doi:  10.3969/j.issn.0517-6611.2009.36.024
    [14]
    邱美娟, 宋迎波, 王建林, 等.山东省冬小麦产量动态集成预报方法.应用气象学报, 2016, 27(2):191-200. doi:  10.11898/1001-7313.20160207
    [15]
    马玉平, 王石立, 王馥棠.作物模拟模型在农业气象业务应用中的研究初探.应用气象学报, 2005, 16(3):293-303. doi:  10.11898/1001-7313.20050303
    [16]
    刘布春, 刘文萍, 梅旭荣, 等.我国农业气象业务引入作物生长模型的前景.气象, 2006, 32(12):10-15. doi:  10.3969/j.issn.1000-0526.2006.12.002
    [17]
    黄晚华, 薛昌颖, 李忠辉, 等.基于作物生长模拟模型的产量预报方法研究进展.中国农业气象, 2009(增刊Ⅰ):140-143;147. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY2009S1033.htm
    [18]
    杨霏云, 高学浩, 钟琦, 等.作物模型、遥感和地理信息系统在国外农业气象服务中的应用进展及启示.气象科技进展, 2012, 2(3):34-38. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201203009.htm
    [19]
    Martín M M S, Olesen J E, Porter J R.Can crop-climate models be accurate and precise? A case study for wheat production in Denmark.Agricultural and Forest Meteorology, 2015, 202:51-60. doi:  10.1016/j.agrformet.2014.11.003
    [20]
    Grassini P, van Bussel L G J, van Wart J, et al.How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis.Field Crops Research, 2015, 177:49-63. doi:  10.1016/j.fcr.2015.03.004
    [21]
    van Wart J, Grassini P, Yang H S, et al.Creating long-term weather data from thin air for crop simulation modeling.Agricultural and Forest Meteorology, 2015, 208:49-58. https://ccafs.cgiar.org/publications/creating-long-term-weather-data-thin-air-crop-simulation-modeling
    [22]
    van Bussel L G J, Müller C, van Keulen H, et al.The effect of temporal aggregation of weather input data on crop growth models' results.Agricultural and Forest Meteorology, 2011, 151(5):607-619. doi:  10.1016/j.agrformet.2011.01.007
    [23]
    Qian B, De Jong R, Yang J, et al.Comparing simulated crop yields with observed and synthetic weather data.Agricultural and Forest Meteorology, 2011, 151(12):1781-1791. doi:  10.1016/j.agrformet.2011.07.016
    [24]
    Semenov M A, Porter J R.Climatic variability and the modelling of crop yields.Agricultural and Forest Meteorology, 1995, 73(3-4):265-283. doi:  10.1016/0168-1923(94)05078-K
    [25]
    Baigorria G A, Jones J W, O'Brien J J.Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model.Agricultural and Forest Meteorology, 2008, 148(8-9):1353-1361. doi:  10.1016/j.agrformet.2008.04.002
    [26]
    Dumont B, Basso B, Leemans V, et al.A comparison of within-season yield prediction algorithms based on crop model behaviour analysis.Agricultural and Forest Meteorology, 2015, 204:10-21. doi:  10.1016/j.agrformet.2015.01.014
    [27]
    姚凤梅, 秦鹏程, 张佳华, 等.基于模型模拟气候变化对农业影响评估的不确定性及处理方法.科学通报, 2011, 56(8):547-555. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201108003.htm
    [28]
    Jones J W, Hoogenboom G, Porter C H, et al.The DSSAT cropping system model.European Journal of Agronomy, 2003, 18(3-4):235-265. doi:  10.1016/S1161-0301(02)00107-7
    [29]
    曹秀霞, 安开忠, 蔡伟, 等.CERES-Rice模型在江汉平原的验证与适应性评价.中国农业气象, 2013, 34(4):447-454. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201304011.htm
    [30]
    刘敏, 刘安国, 邓爱娟, 等.湖北省水稻生长季热量资源变化特征及其对水稻生产的影响.华中农业大学学报, 2011, 30(6):746-752. http://www.cnki.com.cn/Article/CJFDTOTAL-HZNY201106019.htm
    [31]
    刘布春, 王石立, 庄立伟, 等.基于东北玉米区域动力模型的低温冷害预报应用研究.应用气象学报, 2003, 14(5):616-625. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030576&flag=1
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (4628) PDF downloads(837) Cited by()
    • Received : 2015-11-23
    • Accepted : 2016-05-30
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint