Jiang Xiaoling, Wang Donghai, Yin Jinfang, et al. Characteristics of tropopause height over China during East Asian summer monsoon. J Appl Meteor Sci, 2016, 27(4): 445-453. DOI:  10.11898/1001-7313.20160407.
Citation: Jiang Xiaoling, Wang Donghai, Yin Jinfang, et al. Characteristics of tropopause height over China during East Asian summer monsoon. J Appl Meteor Sci, 2016, 27(4): 445-453. DOI:  10.11898/1001-7313.20160407.

Characteristics of Tropopause Height over China During East Asian Summer Monsoon

DOI: 10.11898/1001-7313.20160407
  • Received Date: 2016-01-23
  • Rev Recd Date: 2016-06-13
  • Publish Date: 2016-07-31
  • Tropopause, as a transition layer between the troposphere and stratosphere, plays an important role on the regional and global climate and weather. Influenced by the Tibetan Plateau and monsoon, tropopause over China can even affect the global weather and climate, especially by changing aerosol distribution. Focusing on characteristics of tropopause height, 3 different sub-regions are defined in China during the East Asian summer monsoon, using high vertical resolution sounding data from year 2008 to 2014 collected by the network of L-band sounder. Results are shown as follows. Tropopause height increases with decreasing latitudes. The region with high tropopause moves northward with the maximum locating over the south of the Tibetan Plateau and the region to the southeast of the Plateau after the summer monsoon breaking. The region with large southward and eastward gradient of tropopause height moves from 30°-40°N to 40°-50°N after the summer monsoon break. There is little latitudinal difference in tropopause height over all the three sub-regions, indicating that the topography has little influence. However, tropopause height changes greatly after summer monsoon breaking: In northeast China and central-east China, the tropopause increases and in south China it slightly decreases. Influenced by the surface heat and vertical velocity, the temperature increases in the troposphere and decreases in the troposphere-stratosphere transition layer, which results in an increasing vertical temperature gradient after the summer monsoon breaking over the northeast and central-east China, resulting in higher tropopause. For northeast China, the temperature profile shows double peaks before the monsoon breaking, which is easy to form double tropopauses with a low first tropopause. In south China the temperature increases through the whole atmosphere after the summer monsoon breaking, generating slightly decreased tropopause. Limited by the coarse temporal resolution, more temporal characteristics such as daily changes cannot be studied. Further research should combine various datasets such as satellite to get a comprehensive analysis on the tropopause behavior over the mainland China.
  • Fig. 1  Location of L-band radiosonde stations

    Fig. 2  Sounding profiles of Sanya at 2000 BT 1 May 2014

    Fig. 3  The mean tropopause height of different stages

    (a) tropopause height before summer monsoon break, (b) tropopause height after summer monsoon break, (c) increments after summer monsoon break

    Fig. 4  Southward and eastward gradients of tropopause height of different stages

    (a) southward gradient before summer monsoon break, (b) southward gradient after summer monsoon break, (c) eastward gradient before summer monsoon break, (d) eastward gradient after summer monsoon break

    Fig. 5  The mean tropopause height above different regions before and after summer monsoon break

    (a) northeast China, (b) central-east China, (c) southern China

    Fig. 6  The mean temperature profile before and after summer monsoon break

    Fig. 7  Annual cycle of the mean temperature (the contour, unit:℃) and vertical velocity (the shaded) of different regions

    (a) northeast China, (b) central-east China, (c) southern China

    Table  1  Tropopause height over northeast China, central-east China and southern China

    区域 平均
    纬度
    平均海拔
    高度/m
    夏季风爆发前
    平均对流层顶
    高度/km
    夏季风爆发后
    平均对流层顶
    高度/km
    夏季风爆发前
    对流层顶高度
    标准差/km
    夏季风爆发后
    对流层顶高度
    标准差/km
    东北部 41.0°N 955.2 10.15 14.00 0.777 1.517
    中东部 30.5°N 610.5 15.27 16.45 0.776 0.231
    南部 23.5°N 427.3 16.72 16.39 0.226 0.276
    DownLoad: Download CSV
  • [1]
    WMO.Meteorology-A three-dimentional science:Second session of the commission for aerology.WMO Bulletin, 1957, 4:134-138. http://www.oalib.com/references/16088363
    [2]
    Holton J R, Haynes P H, McIntyre M E, et al.Stratosphere-troposphere exchange.Rev Geophys, 1995, 33(4):403-439. doi:  10.1029/95RG02097
    [3]
    Gettelman A, Hoor P, Pan L L, et al.The extratropical upper troposphere and lower stratosphere.Rev Geophys, 2011, 49, RG3003, doi: 10.1029/2011RG000355.
    [4]
    Randel W J, Jensen E J.Physical processes in the tropical tropopause layer and their roles in a changing climate.Nature Geosci, 2013, 6(3):169-176. doi:  10.1038/ngeo1733
    [5]
    Wang S, Camargo S J, Sobel A H, et al.Impact of the tropopause temperature on the intensity of tropical cyclones:An Idealized study using a mesoscale model.J Atmos Sci, 2014, 71(11):4333-4348. doi:  10.1175/JAS-D-14-0029.1
    [6]
    贾喆, 闻新宇, 胡永云, 等.平流层信号在冬季短期气候预测中的应用.应用气象学报, 2014, 25(1):107-111. doi:  10.11898/1001-7313.20140111
    [7]
    杨莲梅, 张庆云.新疆夏季降水年际变化与亚洲副热带西风急流.应用气象学报, 2008, 19(2):171-179. doi:  10.11898/1001-7313.20080231
    [8]
    刘敏, 薛小宁.天气形势影响对流层顶高度分析.陕西气象, 2011(1):7-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SXQI201101002.htm
    [9]
    赵亮, 丁一汇.梅雨期高位涡源区及其传播过程.应用气象学报, 2008, 19(6):697-709. doi:  10.11898/1001-7313.20080609
    [10]
    Škerlak B, Sprenger M, Pfahl S, et al.Tropopause folds in ERA-Interim:Global climatology and relation to extreme weather events.J Geophys Res:Atmospheres, 2015, 120(10): 4860-4877. doi:  10.1002/2014JD022787
    [11]
    Rimbu N, Stefan S, Busuioc A, et al.Links between blocking circulation and precipitation extremes over Romania in summer.Inter J Climatol, 2015, 36(1):369-376. http://adsabs.harvard.edu/abs/2016IJCli..36..369R
    [12]
    Gettelman A, Salby M L, Sassi F.Distribution and influence of convection in the tropical tropopause region.J Geophys Res, 2002, 107(D10), 4080, doi: 10.1029/2001JD001048.
    [13]
    王鑫, 吕达仁.利用GPS掩星数据分析青藏高原对流层顶结构变化.自然科学进展, 2007, 17(7):913-919. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200707011.htm
    [14]
    Son S W, Tandon N F, Polvani L M.The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurements.J Geophys Res:Atmospheres, 2011, 116, D20113, doi: 10.1029/2011JD016030.
    [15]
    Santer B D, Wehner M F, Wigley T M L, et al.Contributions of anthropogenic and natural forcing to recent tropopause height changes.Science, 2003, 301(5632):479-483. doi:  10.1126/science.1084123
    [16]
    Guo D, Lu D, Sun Z.Seasonal variation of global stratosphere-troposphere mass exchange.Progress in Natural Science, 2007, 17(12):1466-1475. http://atmosp.physics.utoronto.ca/SPARC/SPARC2008GA/Posters/SessionB_P55_A188_Lu_Daren.pdf
    [17]
    刘慧, 韦志刚, 魏红, 等.近51年我国对流层顶高度的变化特征.高原气象, 2012, 31(2):351-358. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202007.htm
    [18]
    卞建春, 陈洪滨, 吕达仁.用垂直高分辨率探空资料分析北京上空下平流层重力波的统计特性.中国科学D辑:自然科学, 2004, 34(8):748-756. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200408006.htm
    [19]
    路传彬, 陈娟, 华行祥, 等.皖北地区对流层顶气象特征分析.沙漠与绿洲气象, 2014, 8(1):28-31. http://www.cnki.com.cn/Article/CJFDTOTAL-XJQX201401007.htm
    [20]
    何立富, 王遂缠, 张志刚.珠穆拉玛峰地区气象要素特征观测研究.应用气象学报, 2010, 21(6):641-648. doi:  10.11898/1001-7313.20100601
    [21]
    Yin J, Wang D, Zhai G.An evaluation of ice nuclei characteristics from the long-term measurement data over North China.Asia-Pac J Atmos Sci, 2012, 48(2):197-204. doi:  10.1007/s13143-012-0020-8
    [22]
    Yin J, Wang D, Zhai G.A comparative study of cloud-precipitation microphysical properties between east Asia and other regions.J Meteor Soc Japan, SerⅡ, 2013, 91(4):507-526. doi:  10.2151/jmsj.2013-406
    [23]
    李双双, 杨赛霓, 张东海, 等.近54年京津翼地区热浪时空变化特征及影响因素.应用气象学报, 2015, 26(5):545-554. doi:  10.11898/1001-7313.20150504
    [24]
    Gettelman A, Kinnison D, Dunkerton T J, et al.Impact of monsoon circulations on the upper troposphere and lower stratosphere.J Geophys Res:Atmospheres, 2004, 109, D22101, doi: 10.1029/2004JD004878.
    [25]
    Qian Y, Gong D, Fan J, et al.Heavy pollution suppresses light rain in China:Observations and modeling.J Geophys Res:Atmospheres, 2009, 114, D00K02, doi: 10.1029/2008JD011575.
    [26]
    Fu R, Hu Y, Wright J S, et al.Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau.PNAS, 2006, 103(15):5664-5669. doi:  10.1073/pnas.0601584103
    [27]
    Randel W J, Park M, Emmons L, et al.Asian monsoon transport of pollution to the stratosphere.Science, 2010, 328(5978):611-613. doi:  10.1126/science.1182274
    [28]
    Jensen E J, Pfister L, Ueyama R, et al.Investigation of the transport processes controlling the geographic distribution of carbon monoxide at the tropical tropopause.J Geophys Res:Atmospheres, 2015, 120(5):2067-2086. doi:  10.1002/2014JD022661
    [29]
    奉超.浅谈L波段探空系统资料及在预报中的应用.气象研究与应用, 2007, 28(2):84-87. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX200702022.htm
    [30]
    Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quarter J Royal Meteor Soc, 2011, 137(656):553-597. doi:  10.1002/qj.v137.656
    [31]
    李伟.国产HS02型湿敏电容湿度传感器性能分析.高原气象, 2012, 31(2):568-580. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201202032.htm
    [32]
    王英, 熊安元.L波段探空仪器换型对高空湿度资料的影响.应用气象学报, 2015, 26(1):76-86. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150108&flag=1
    [33]
    Santer B D, Sausen R, Wigley T M L, et al.Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations:Decadal changes.J Geophys Res, 2003, 108(D1), 4002, doi: 10.1029/2002JD002258.
    [34]
    Dessler A E.Clouds and water vapor in the Northern Hemisphere summertime stratosphere.J Geophys Res, 2009, 114, D00H09, doi: 10.1029/2009JD012075.
    [35]
    Hoinka K P.Temperature, humidity, and wind at the global tropopause.Mon Wea Rev, 1999, 127(10):2248-2265. doi:  10.1175/1520-0493(1999)127<2248:THAWAT>2.0.CO;2
    [36]
    周顺武, 杨双艳, 张人禾, 等.青藏高原两类对流层顶高度的季节变化特征.大气科学学报, 2010, 33(3):307-314. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201003005.htm
    [37]
    叶笃正, 张捷迁.青藏高原加热作用对夏季东亚大气环流影响的初步模拟实验.中国科学, 1974, 3:301-320. http://www.cnki.com.cn/Article/CJFDTOTAL-JAXK197403009.htm
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(1)

    Article views (4593) PDF downloads(475) Cited by()
    • Received : 2016-01-23
    • Accepted : 2016-06-13
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint