Liu Xiaoyun, Wang Jingsong, Yang Jinhu, et al. The relationship between the autumn drought in the eastern part of Northwest China and the summer Asian-Pacific oscillation. J Appl Meteor Sci, 2016, 27(4): 454-462. DOI:  10.11898/1001-7313.20160408.
Citation: Liu Xiaoyun, Wang Jingsong, Yang Jinhu, et al. The relationship between the autumn drought in the eastern part of Northwest China and the summer Asian-Pacific oscillation. J Appl Meteor Sci, 2016, 27(4): 454-462. DOI:  10.11898/1001-7313.20160408.

The Relationship Between the Autumn Drought in the Eastern Part of Northwest China and the Summer Asian-Pacific Oscillation

DOI: 10.11898/1001-7313.20160408
  • Received Date: 2015-12-14
  • Rev Recd Date: 2016-03-04
  • Publish Date: 2016-07-31
  • The eastern of Northwest China is recognized universally as a sensitive area of climate change and ecologically fragile region. Being adjacent to the Tibetan Plateau, effects of the Plateau terrain on atmospheric heating leads to thermal difference between the atmosphere above the Tibet Plateau and this area. The Asian-Pacific oscillation (APO) is defined as a zonal seesaw of the tropospheric temperature in the mid latitudes of the Asian-Pacific region. When the troposphere is cooling in mid-latitudes of the Asian continent, it is warming in mid-latitudes of the central and eastern North Pacific, and vice versa. In essence, the Tibetan Plateau thermal effects arouse likeness APO large scale teleconnection pattern. Used as an index of the thermal contrast between Asia and the North Pacific, it provides a new way to explore the Asian atmospheric circulations and climate change.Based the NCEP/NCAR reanalysis data, the monthly precipitation and temperature from 589 stations of China during 1961-2010, the relationship between the summer APO and the following autumn drought in China is examined statistically. Results show there are a significantly positive correlation between the APO index and the following autumn in the eastern part of Northwest China. A positive phase of summer APO, characterized by two high ridges strengthened located near the Ural Mountains and east of the Okhotsk Sea, respectively, and a trough deepened between the Balkhash and the Baykal. A positive phase of summer APO associated with east Asian subtropical westerly jet stream turns to be weakened and northward. These changes provide favoring conditions for enhanced wet in the eastern part of Northwest China. The situation is reversed in the negative phase of summer APO, leading to drought in this region. The east wind strengthening at the bottom of the northeastern Pacific anticyclone and the moisture transport that roots in the Arabian Sea and the Bay of Bengal strengthening has very important contribution to the variability of the atmospheric water vapor resource in the eastern part of Northwest China. Moreover, the positive phase of summer APO is followed by increased ascending vertical velocity in autumn especially during the 54th-56th pentad.Specifically, the anomalous signal of the summer APO can persist until the following autumn, accompanying with continuous high correlations between the summer APO index and that in the following autumn. Therefore, the summer APO variation provides a potential valuable signal for predicting the autumn wet/drought in the eastern part of Northwest China.
  • Fig. 1  EOF1 mode of the normalized summer upper-tropospheric T′ over the Northern Hemisphere from 1961 to 2010

    (the solid box denotes the mid-latitude region of Asia, the dashed box denotes the north Pacific area)

    Fig. 2  Spatial distribution of correlation coefficients between the summer APO index and the normalized autumn drought index in China

    (the shaded denotes passing the test of 0.05 level)

    Fig. 3  Time series of the summer APO index and autumn drought index in the eastern part of Northwest China

    Fig. 4  The left heterogeneous correlation pattern of singular value decomposition (SVD) mode for the normalized summer upper-tropospheric T′ and normalized autumn drought index over China

    (the shaded denotes passing the test of 0.05 level)

    Fig. 5  The right heterogeneous correlation pattern of singular value decomposition (SVD) mode for the normalized summer upper-tropospheric T′ and autumn normalized drought index over China

    (the shaded denotes passing the test of 0.05 level)

    Fig. 6  Composite difference of 500 hPa autumn geopotential height between the positive summer APO index and the negative summer APO index years

    (unit:dagpm, the shaded denotes passing the test of 0.05 level)

    Fig. 7  The same as in Fig. 6, but for 200 hPa zonal wind

    (unit:m·s-1, the shaded denotes passing the test of 0.05 level)

    Fig. 8  The same as in Fig. 6, but for vertically integrated water vapor transport flux

    (unit:kg·m-1·s-1, the shaded denotes passing the test of 0.05 level)

    Fig. 9  Composite difference of the autumn mean vertical circulation and the pentad mean vertical velocity between the positive summer APO index and the negative summer APO index years

    (unit of meridional wind:m·s-1, unit of vertical velocity:10-2 Pa·s-1, the gray denotes passing the test of 0.05 level) (a) cross section of composite difference of the autumn mean vertical circulation along 105°E, (b) cross section of composite difference of the pentad regional mean vertical velocity over 35°-37.5°N, 102.5°-110°E

    Fig. 10  Composite difference of autumn pseudo-equivalent potential temperature (θse) and pentad θse between the positive summer APO index and negative summer APO index years (unit:K)

    (the gray shaded denotes passing the test of 0.05 significant level) (a) cross section of composite difference of autumn θse along 105°E, (b) cross section of composite difference of pentad regional θse over 35°-37.5°N, 102.5°-110°E

    Fig. 11  EOF1 mode of the normalized autumn upper-tropospheric T′ over the Northern Hemisphere from 1961 to 2010

    Fig. 12  The summer APO index and the autumn APO index from 1961 to 2010

  • [1]
    张强, 李宏宇, 张立阳, 等.陇中黄土高原自然植被下垫面陆面过程及其参数对降水波动的气候响应.物理学报, 2013, 62(1):019201-1-11.
    [2]
    李庆祥, 黄嘉佑.对我国极端高温事件阈值的探讨.应用气象学报, 2011, 22(2):138-144. doi:  10.11898/1001-7313.20110202
    [3]
    龚志强, 王晓娟, 崔冬林, 等.区域性极端低温事件的识别及其变化.应用气象学报, 2012, 23(2):195-204. doi:  10.11898/1001-7313.20120208
    [4]
    杨金虎, 江志红, 王鹏祥, 等.西北地区东部夏季极端降水量非均匀性特征.应用气象学报, 2008, 19(1):111-115. doi:  10.11898/1001-7313.20080118
    [5]
    马柱国, 符淙斌.20世纪下半叶全球干旱化的事实及其与大尺度背景的联系.中国科学:D辑, 2007, 37(2):222-233. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200702009.htm
    [6]
    马柱国, 符淙斌.1951—2004年中国北方干旱化的基本事实.科学通报, 2006, 51(20):2429-2439. doi:  10.3321/j.issn:0023-074X.2006.20.016
    [7]
    马柱国, 符淙斌.中国北方干旱区地表湿润状况的趋势分析.气象学报, 2001, 59(6):737-746. doi:  10.11676/qxxb2001.077
    [8]
    Huang J, Guan X, Ji F.Enhanced cold-season warming in semi-arid regions.Atmos Chem Phys, 2012, 12(12):5391-5398. doi:  10.5194/acp-12-5391-2012
    [9]
    刘晓云, 王劲松, 李栋梁, 等.黄土高原中部秋季干湿的年际和年代际环流异常特征及与海温的多尺度相关性研究.物理学报, 2013, 63(21):21920-1-15. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201321070.htm
    [10]
    柯宗建, 华丽娟, 钟霖浩, 等.海温异常对东亚夏季风强度先兆信号的影响.应用气象学报, 2015, 26(5):536-544. doi:  10.11898/1001-7313.20150503
    [11]
    郭其蕴.东亚夏季风强度指数及其变化的分析.地理学报, 1983, 38(3):207-217. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200404011.htm
    [12]
    孙秀荣, 陈隆勋, 何金海.东亚海陆热力差指数及其与环流和降水的年际变化关系.气象学报, 2002, 60(2):164-172. doi:  10.11676/qxxb2002.020
    [13]
    Zhao P, Zhu Y N, Zhang R H.An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability.Clim Dyn, 2007, 29:293-303. doi:  10.1007/s00382-007-0236-y
    [14]
    赵平, 陈军明, 肖栋, 等.夏季亚洲-太平洋涛动与大气环流和季风降水.气象学报, 2008, 66(5):716-729. doi:  10.11676/qxxb2008.066
    [15]
    Zhou B, Zhao P.Influence of the Asian-Pacific oscillation on spring precipitation over central eastern China.Adv Atmos Sci, 2010, 27(3):575-582. doi:  10.1007/s00376-009-9058-7
    [16]
    周秀骥, 赵平, 陈民军, 等.青藏高原热力作用对北半球气候影响的研究.中国科学:D辑, 2009, 39(11):1473-1486. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200911001.htm
    [17]
    王跃男, 陈隆勋, 何金海, 等.夏季青藏高原热源低频振荡对我国东部降水的影响.应用气象学报, 2009, 20(4):419-427. doi:  10.11898/1001-7313.20090405
    [18]
    柏晶瑜, 徐祥德, 周玉淑, 等.春季青藏高原感热异常对长江中下游夏季降水影响的初步研究.应用气象学报, 2003, 14(3):363-368. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030344&flag=1
    [19]
    朱艳峰, 张博, 陈隆勋.夏季青藏高原与其东部平原的热力差异对中国降水的影响.科学通报, 2010, 55(6):483-489. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201006017.htm
    [20]
    刘晓云, 李栋梁, 王劲松.1961—2009年中国区域干旱状况的时空变化特征.中国沙漠, 2012, 32(2):473-483. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201202029.htm
    [21]
    Thornthwaite C W.An approach toward a rational classification of climate.Geogr Rev, 1948, 8:57-94. https://www.researchgate.net/publication/44461907_An_approach_toward_a_rational_classification_of_climate_C_W_Thornthwaite
    [22]
    周波涛, 赵平, 崔绚.亚洲-太平洋涛动变化与北太平洋海温异常的联系.科学通报, 2010, 55(1):74-79. http://cdmd.cnki.com.cn/Article/CDMD-10300-1016197719.htm
    [23]
    North G R, Bell T L, Cahalan R F, et al.Sampling errors in the estimation of empirical orthogonal functions.Mon Wea Rev, 1982, 110:699-706. doi:  10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
    [24]
    吴洪宝, 吴蕾.气候变率诊断和预测方法.北京:气象出版社, 2005:104.
    [25]
    白肇烨, 徐国昌.中国西北天气.北京:气象出版社, 1988:148-150.
    [26]
    况雪源, 张耀存.东亚副热带西风急流与地表加热场的耦合变化特征.大气科学, 2007, 31(1):77-87. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200701007.htm
    [27]
    董敏, 朱文妹, 徐祥德.青藏高原地表热通量变化及其对初夏东亚大气环流的影响.应用气象学报, 2001, 12(4):458-468. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010460&flag=1
    [28]
    李崇银, 王作台, 林士哲, 等.东亚夏季风活动与东亚高空西风急流位置北跳关系的研究.大气科学, 2004, 28(5):641-658. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200405000.htm
    [29]
    丁一汇.高等天气学.北京:气象出版社, 1991.
  • 加载中
  • -->

Catalog

    Figures(12)

    Article views (2679) PDF downloads(363) Cited by()
    • Received : 2015-12-14
    • Accepted : 2016-03-04
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint