Chen Dan, Zhou Changyan, Deng Mengyu. Characteristics of water vapor content in Southwest China and its association with the South Asia High in summer. J Appl Meteor Sci, 2016, 27(4): 473-479. DOI:  10.11898/1001-7313.20160410.
Citation: Chen Dan, Zhou Changyan, Deng Mengyu. Characteristics of water vapor content in Southwest China and its association with the South Asia High in summer. J Appl Meteor Sci, 2016, 27(4): 473-479. DOI:  10.11898/1001-7313.20160410.

Characteristics of Water Vapor Content in Southwest China and Its Association with the South Asia High in Summer

DOI: 10.11898/1001-7313.20160410
  • Received Date: 2016-01-22
  • Rev Recd Date: 2016-05-05
  • Publish Date: 2016-07-31
  • Based on ERA-interim high resolution data by ECMWF from 1979 to 2014, in terms of EOF decomposition, wavelet transform, anomaly composite and correlation analysis, spatial and temporal variations of atmospheric water vapor content in Southwest China and its relationship with the South Asia High in summer are discussed. Results indicate that the spatial distribution morphology of summer atmospheric water vapor content in Southwest basically has the same anomaly in whole type, north-south oscillation type and east-west oscillation type, and the explained variance of EOF1 is much higher than those of EOF2 and EOF3, which means the same anomaly in whole type (EOF1) can reflect the main distribution characteristic of water vapor content in Southwest China in summer. The summer atmospheric water vapor content in Southwest China shows obvious inter-annual variation characteristics, and there is obviously corresponding relationship between summer atmospheric water vapor content in Southwest China and the South Asia High. More (less) water vapor content is accompanied with stronger (weaker) South Asia High. Furthermore, there are significant positive correlations between the water vapor content in Southwest China and the South Asia High intensity index, the area index and the eastward index, which reach 0.64, 0.62 and 0.59, respectively. In addition, when the South Asia High strengthens, the subtropical high over the West Pacific extends to west, and the southwest airflow of the lower troposphere is enhanced, which is favorable for the water vapor transport to the south of China from the ocean. Meanwhile, the South Asia High enhances the upward motion in Southwest China, causing more water vapor content. On one hand, the westward extension and the strengthening of subtropical high guides the Western Pacific water vapor transport to the southwest of China; on the other hand, due to blocking effects of the subtropical high, the water vapor which transported from the South China Sea leads to increased atmospheric water vapor content in Southwest China. When the South Asia high is weakened, the situation is the opposite.

  • Fig. 1  The first three EOF modes of the atmospheric water vapor content

    (a) EOF1, (b) EOF2, (c) EOF3

    Fig. 2  The time series of the first EOF mode

    (dotted lines denote +0.8 and-0.8)

    Fig. 3  Composite 200 hPa geopotential height anomalies in summer for the more water vapor cases (a) and the less water vapor cases (b) of Southwest China

    (the shaded denotes passing the test of 0.05 level)

    Fig. 4  The standardized time series of the atmospheric water vapor content in Southwest China and the time series indexes of the South Asia

    (a) the time series of EOF1, (b) the intensity index of the South Asia High, (c) the area index of the South Asia High, (d) the east extension index of the South Asia High

    Fig. 5  Composite longitude-height sections of zonal-vertical circulation anomalies and the vertical velocity anomalies averaged over 20°-35°N for cases of the strong (a) and the weak (b) South Asia High

    (the vector denotes composition of the zonal wind and 100 times of vertical velocity; the contour denotes vertical velocity, unit:10-2 Pa·s-1; the shaded denotes passing the test of 0.05 level)

    Fig. 6  Composite water vapor flux for cases of the strong (a) and the weak (b) South Asia High

    (unit:102 kg·m-1·s-1, the shaded denotes passing the test of 0.05 level)

  • [1]
    Trenberth K E, Smith L, Qian T, et al.Estimates of the global water budget and its annual cycle using observational and model data.Journal of Hydrometeorology, 2007, 8:758-769. doi:  10.1175/JHM600.1
    [2]
    Ross R J, Eliott W P.Radiosonde-based Northern Hemisphere tropospheric water vapor trends.J Climate, 2001, 14(7):1602-1612. doi:  10.1175/1520-0442(2001)014<1602:RBNHTW>2.0.CO;2
    [3]
    Durre I, Williams C N, Yin X, et al. Radiosonde-based trends in precipitable water over the Northern Hemisphere: An update.J Geophys Res:Atmospheres, 2009, 114, D5, doi: 10.1029/2008JD010989.
    [4]
    陈添宇, 李照荣, 陈乾, 等.用GMS5卫星反演水汽场分析中国西北地区大气水汽分布的气候特征.大气科学, 2005, 29(6):864-871. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506002.htm
    [5]
    姚展予, 袁健, 李万彪, 等.用GMS5卫星资料结合地面资料联合估算水汽分布.气候与环境研究, 2001, 6(2):197-202. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200102009.htm
    [6]
    朱民, 郁凡, 郑维忠, 等.卫星反演湿度场及其在暴雨预报中的初步应用分析.气象学报, 2002, 58(4):470-478. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200004009.htm
    [7]
    李成才, 朱元竞.利用GMS5红外分裂窗数据反演水汽的应用研究.北京大学学报:自然科学版, 1998, 34(1):33-39. http://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ801.006.htm
    [8]
    杨红梅, 何平, 徐宝祥.用GPS资料分析华南暴雨的水汽特征.气象, 2002, 28(5):10-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200205003.htm
    [9]
    陈娇娜, 李国平, 黄文诗, 等.华西秋雨天气过程中GPS遥感水汽总量演变特征.应用气象学报, 2009, 20(6):753-760. doi:  10.11898/1001-7313.20090614
    [10]
    李成才, 毛节泰.GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9(4):470-477. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1
    [11]
    罗布, 杨秀海, 央金.西藏地区GPS水汽资料与降水量之间的对比分析.高原山地气象研究, 2010, 30(1):54-57. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201001010.htm
    [12]
    戴莹, 杨修群.我国大陆上空可降水量的时空变化特征.气象科学, 2009, 29(2):143-149. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX200902000.htm
    [13]
    刘建西, 龙美希, 杜远林.川渝地区空中水资源分布及水汽输送特征.高原山地气象研究, 2010, 30(2):31-35. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200610009041.htm
    [14]
    陆渝蓉, 高国栋.我国大气中平均水汽含量与水分平衡的特征.气象学报, 1984, 42(3):301-310. doi:  10.11676/qxxb1984.035
    [15]
    廖荣伟, 赵平.东亚季风湿润区水分收支的气候特征.应用气象学报, 2010, 21(6):649-658. doi:  10.11898/1001-7313.20100602
    [16]
    廖荣伟, 赵平.季风湿润区冬季水汽收支年际及年代际变化特征.应用气象学报, 2011, 22(6):642-653. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110601&flag=1
    [17]
    王炳忠, 申彦波.我国上空的水汽含量及其气候学估算.应用气象学报, 2012, 23(6):763-768. doi:  10.11898/1001-7313.20120614
    [18]
    彭艳秋, 王卫国, 刘煜, 等.利用不同资料研究我国大陆上空柱水汽含量.应用气象学报, 2012, 23(1):59-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120107&flag=1
    [19]
    林丹, 王维佳, 李慧晶.西南地区可降水量时空分布和变化特征.气象科技, 2013, 41(5):889-894. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201305018.htm
    [20]
    任菊章, 肖子牛, 张万诚, 等.西南地区可降水量分布及其与纵向岭谷区降水的关系.气象科学, 2013, 33(4):442-448. doi:  10.3969/2012jms.0123
    [21]
    彭丽霞, 孙照渤, 倪东鸿, 等.夏季南亚高压年际变化及其与ENSO的关系.大气科学, 2009, 33(4):783-795. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200904013.htm
    [22]
    陶诗言, 朱福康.夏季亚洲南部100 hPa流型的变化及其与西太平洋副热带高压进退的关系.气象学报, 1964, 34(4):385-395. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB196404000.htm
    [23]
    Wei W, Zhang R H, Wen M, et al.Impact of Indian summer monsoon on the South Asian High and its influence on summer rainfall over China.Climate Dynamics, 2014, 43(5):1257-1269. doi:  10.1007/s00382-013-1938-y
    [24]
    Wei W, Zhang R H, Wen M, et al.Interannual variation of the South Asian High and its relation with Indian and East Asian summer monsoon rainfall.J Climate, 2015, 28(7):2623-2634. doi:  10.1175/JCLI-D-14-00454.1
    [25]
    王斌, 李跃清.近10多年南亚高压活动特征及其影响的研究进展.高原山地气象研究, 2011, 31(2):75-80. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201102015.htm
    [26]
    魏维, 张人禾, 温敏.南亚高压的南北偏移与我国夏季降水的关系.应用气象学报, 2012, 23(6):650-659. doi:  10.11898/1001-7313.20120602
    [27]
    郑飒飒, 李跃清, 齐冬梅, 等.青藏高原夏季风对长江中下游气候的影响及与南亚高压的联系.高原山地气象研究, 2014, 34(2):30-38. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201402006.htm
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (2824) PDF downloads(614) Cited by()
    • Received : 2016-01-22
    • Accepted : 2016-05-05
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint