Li Zuoyong, Xu Yuanwei, Wang Jiayang, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression. J Appl Meteor Sci, 2016, 27(4): 480-487. DOI:  10.11898/1001-7313.20160411.
Citation: Li Zuoyong, Xu Yuanwei, Wang Jiayang, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression. J Appl Meteor Sci, 2016, 27(4): 480-487. DOI:  10.11898/1001-7313.20160411.

Evaluation Model of Meteorological Disaster Loss with Normalized Indices Based on Projection Pursuit Regression

DOI: 10.11898/1001-7313.20160411
  • Received Date: 2016-01-15
  • Rev Recd Date: 2016-05-10
  • Publish Date: 2016-07-31
  • Scientific and reasonable evaluation of meteorological disaster loss has important significance for decisions of disaster reduction and relief. A universal and general model of projection pursuit regression (PPR) is proposed with the matrix for the evaluations of different meteorological disaster systems, on the basis of gauge transformation for disaster loss indexes. Because of the "equivalence" of each normalized index, only models of NV-PPR (2) and NV-PPR (3) are necessary for the normalized index values (NV) of 2 indices and 3 indices of meteorological disaster system. Furthermore, the NV-PPR modeling for over 3 indexes of meteorological disaster system could be represented by the combinations of some NV-PPR (2) and (or) NV-PPR (3) models. Models are applied to the evaluations of typhoon disaster loss in Guangdong and 2 lightning disasters loss in Chongqing, and evaluation results of this method are compared with those of other methods. It shows that the evaluation model (NV-PPR) of meteorological disaster loss with gauged transformation based on projection pursuit regression is independent of index numbers, with features of simplicity and utility. The model can also be extended and apply to other disaster loss assessment systems.
  • Table  1  Average values, standard deviation of generated samples and variation ranges of normalized index values of grade standard for different meteorological disaster systems

    k x′jk xjk σjk
    1 [0.10, 0.24] 0.1855 0.0278
    2 [0.18, 0.32] 0.2417 0.0341
    3 [0.25, 0.40] 0.3064 0.0305
    4 [0.33, 0.46] 0.3779 0.0326
    5 [0.40, 0.55] 0.4430 0.0275
    DownLoad: Download CSV

    Table  2  Benchmarks cj0, grade standard values cjk and normalized standard values x′jk of 5 indices for typhoon disaster loss

    指标 cj0 k=1(微灾) k=2(小灾) k=3(中灾) k=4(大灾)
    cjk x′jk cjk x′jk cjk x′jk cjk x′jk
    C1 1 ≤5 0.1609 20 0.2996 30 0.3401 40 0.3689
    C2 0.05 ≤1 0.1498 10 0.2649 20 0.2996 100 0.3800
    C3 20 ≤100 0.1609 300 0.2708 700 0.3555 900 0.3807
    C4 0.12 ≤0.5 0.1427 1 0.2120 3 0.3219 10 0.4423
    C5 1.2 ≤5 0.1427 20 0.2813 30 0.3219 100 0.4423
    DownLoad: Download CSV

    Table  3  Actual values cj, normalized values x′j of indices for typhoon disaster loss of 6 typhoon disasters in Guangdong Province

    台风编号 C1 C2 C3 C4 C5
    c1 x′1 c2 x′2 c2 x′2 c4 x′4 c5 x′5
    0104 29.17 0.3373 26 0.3127 712.34 0.3573 1.09 0.2206 28.78 0.3177
    0114 11.27 0.2422 4 0.2191 21.27 0.0062 1 0.212 7.89 0.1883
    0220 5.14 0.1637 0 0.0000 64.35 0.1169 0.08 0.0000 0.78 0.0000
    0604 30.9 0.3431 123 0.3904 779 0.3662 12.12 0.4615 143.67 0.4785
    0606 35.18 0.3560 46 0.3412 473.5 0.3164 2.49 0.3033 66.27 0.4011
    9710 27.9 0.3329 71 0.3629 913.4 0.3821 2.3 0.2953 32.18 0.3289
    DownLoad: Download CSV

    Table  4  Assessment results of 6 typhoon disasters loss in Guangdong Province by NV-PPR model and Hopfield neural network

    台风编号 NV-PPR模型 5个NV-PPR (2) 5个NV-PPR (3) PPR (2) 和PPR (3) Hopfield神经网络
    模型评价级别
    平均值 级别 平均值 级别 平均值 级别 平均值 级别
    0104 0.4838 3 0.4982 3 0.4934 3 0.4958 3 大灾
    0114 0.2588 2 0.2797 2 0.2770 2 0.2784 2 小灾
    0220 0.0680 1 0.0904 1 0.0896 1 0.0900 1 微灾
    0604 0.6372 4~5 0.6575 5 0.6512 5 0.6544 5 巨灾
    0606 0.5377 4 0.5538 4 0.5485 4 0.5512 4 大灾
    9710 0.5366 4 0.5486 4 0.5434 4 0.5460 4 大灾
    DownLoad: Download CSV

    Table  5  Grading standards of lightning disaster loss indices

    指标 cj0 k=1(一般) k=2(较重) k=3(严重) k=4(特重)
    cj1 x′j1 cj2 x′j2 cj3 x′j3 cj4 x′j4
    C1 2.5 5 0.1386 7.5 0.2197 15 0.3584 20 0.4159
    C2 25 50 0.1386 75 0.2197 150 0.3584 200 0.4159
    C3 1.2 2 0.1022 3.5 0.2141 7.5 0.3665 10 0.4241
    C4 1.2 2 0.1022 3.5 0.2141 7.5 0.3665 10 0.4241
    C5 25 50 0.1386 75 0.2197 150 0.3584 200 0.4159
    C6 12 67 0.1720 200 0.2813 500 0.3729 667 0.4018
    C7 A 0.17 B 0.25 D 0.33 E 0.40
       注:A表示古迹受到轻微破坏,容易修复;B表示古迹受到较为严重破坏,可以修复但有一定难度;D表示古迹受到严重破坏,小部分损毁古迹无法修复;E表示古迹受到严重破坏,部分损毁古迹无法修复。
    DownLoad: Download CSV
  • [1]
    Schmidt S, Kemfert C, Hoppe P.The impact of social-economics and climate change on tropical cyclone losses in the USA.Regional Environmental Change, 2010, 10(1):13-23. doi:  10.1007/s10113-008-0082-4
    [2]
    Xiao Fengjin, Xiao Zinin.Characteristics of tropical cyclones in China and their impacts analysis.Nat Hazards, 2010, 54:827-837. doi:  10.1007/s11069-010-9508-7
    [3]
    Zhang Q, Wu L, Lin Q.Troptical cyclone damages in China 1983-2006.Bull Amer Meteor Soc, 2009, 90(4):489-495. doi:  10.1175/2008BAMS2631.1
    [4]
    Jose I B.Major flood disasters in Europe:1950-2005.Nat Hazards, 2007, 42:125-148. doi:  10.1007/s11069-006-9065-2
    [5]
    叶殿秀, 赵珊珊, 王有民, 等.2012年我国主要气象灾害回顾.灾害学, 2013, 28(3):128-132. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201303025.htm
    [6]
    陈联寿.热带气象灾害及其研究进展.气象, 2010, 36(7):101-110. doi:  10.7519/j.issn.1000-0526.2010.07.017
    [7]
    张蕾, 霍治国, 黄大鹏.等.10—11月海南省瓜菜苗期湿涝风险评估与区划.应用气象学报, 2015, 26(4):432-441. doi:  10.11898/1001-7313.20150405
    [8]
    李莉, 匡绍敏, 莫建飞, 等.广西甘蔗秋旱灾害风险评估技术初步研究.应用气象学报, 2016, 27(1):95-101. doi:  10.11898/1001-7313.20160110
    [9]
    Nalbantis I, Tsakiris G.Assessment of hydrological drought revisited.Water Resources Management, 2009, 23(5):881-897. doi:  10.1007/s11269-008-9305-1
    [10]
    Ologunorisa T E.An assessment of flood vulnerability zones in the Niger delta Nigeria.Inter J Environ Studies, 2004, 61(1):31-38. doi:  10.1080/0020723032000130061
    [11]
    李祚泳, 杨怀金, 燕鹏.基于免疫进化算法优化的灾情评估指数公式及效果检验.高原气象, 2004, 23(4):553-557. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200404021.htm
    [12]
    李芬, 于文金, 张建新, 等.干旱灾害评估研究进展.地理科学进展, 2011, 30(7):891-898. doi:  10.11820/dlkxjz.2011.07.015
    [13]
    张容焱, 徐宗焕, 游立军, 等.福建热带气旋风雨空间分布特征及风险评估.应用气象学报, 2012, 23(6):672-682. doi:  10.11898/1001-7313.20120604
    [14]
    侯威, 杨杰, 赵俊虎.不同时间尺度下气象旱涝强度评估指数.应用气象学报, 2013, 24(6):695-703. doi:  10.11898/1001-7313.20130606
    [15]
    Choi K S, Kim D W, Byun H R.Statistical model for seasonal prediction of tropical cyclone frequency in the mid-latitudes of East Asia.Theoritical Application Climate, 2010, 102(1):105-114. https://www.cabdirect.org/cabdirect/abstract/20103300664
    [16]
    Hamid S, Golam K B M, Gulati S, et al.Predicting losses of residential structures in the state of Florida by the public hurricane loss evaluation model.Statistical Methodology, 2010, 7(5):552-573. doi:  10.1016/j.stamet.2010.02.004
    [17]
    闫敏慧, 姚秀萍, 王蕾, 等.用层次分析法确定气象服务评价指标权重.应用气象学报, 2014, 25(4):470-475. doi:  10.11898/1001-7313.20140410
    [18]
    卞洁, 李双林, 何金海.长江中下游地区洪涝灾害风险性评估.应用气象学报, 2011, 22(5):604-611. doi:  10.11898/1001-7313.20110511
    [19]
    刘少军, 张京红, 何政伟, 等.改进的物元可拓模型在台风灾害预评估中的应用.自然灾害学报, 2012, 21(2):135-141. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201202019.htm
    [20]
    欧阳蔚, 于艳青, 金菊良, 等.基于联系数的安徽省抗旱能力综合评价模型.人民黄河, 2014, 36(3):52-57. http://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201403019.htm
    [21]
    刘德地, 陈晓宏.基于支持向量机的洪水灾情综合评价模型.长江流域资源与环境, 2008, 17(3):490-494. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200803032.htm
    [22]
    董四辉, 宿博, 赵宇库.基于投影寻踪技术的洪水灾情综合评价.中国安全科学学报, 2012, 22(12):64-69. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201212010.htm
    [23]
    李祚泳, 徐源蔚, 汪嘉杨, 等.基于前向神经网络的广义环境系统评价普适模型.环境科学学报, 2015, 35(9):2996-3005. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201509043.htm
    [24]
    陈仕鸿, 刘晓庆.基于离散型Hopfield神经网络的台风灾情评估模型.自然灾害学报, 2011, 20(5):47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201105006.htm
    [25]
    李家启, 秦健, 李良福, 等.雷电灾害评估及其等级划分.西南大学学报:自然科学版, 2010, 32(11):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201011028.htm
  • 加载中
  • -->

Catalog

    Tables(5)

    Article views (3081) PDF downloads(435) Cited by()
    • Received : 2016-01-15
    • Accepted : 2016-05-10
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint