k | x′jk | x′jk | σjk |
1 | [0.10, 0.24] | 0.1855 | 0.0278 |
2 | [0.18, 0.32] | 0.2417 | 0.0341 |
3 | [0.25, 0.40] | 0.3064 | 0.0305 |
4 | [0.33, 0.46] | 0.3779 | 0.0326 |
5 | [0.40, 0.55] | 0.4430 | 0.0275 |
Citation: | Li Zuoyong, Xu Yuanwei, Wang Jiayang, et al. Evaluation model of meteorological disaster loss with normalized indices based on projection pursuit regression. J Appl Meteor Sci, 2016, 27(4): 480-487. DOI: 10.11898/1001-7313.20160411. |
Table 1 Average values, standard deviation of generated samples and variation ranges of normalized index values of grade standard for different meteorological disaster systems
k | x′jk | x′jk | σjk |
1 | [0.10, 0.24] | 0.1855 | 0.0278 |
2 | [0.18, 0.32] | 0.2417 | 0.0341 |
3 | [0.25, 0.40] | 0.3064 | 0.0305 |
4 | [0.33, 0.46] | 0.3779 | 0.0326 |
5 | [0.40, 0.55] | 0.4430 | 0.0275 |
Table 2 Benchmarks cj0, grade standard values cjk and normalized standard values x′jk of 5 indices for typhoon disaster loss
指标 | cj0 | k=1(微灾) | k=2(小灾) | k=3(中灾) | k=4(大灾) | |||||||
cjk | x′jk | cjk | x′jk | cjk | x′jk | cjk | x′jk | |||||
C1 | 1 | ≤5 | 0.1609 | 20 | 0.2996 | 30 | 0.3401 | 40 | 0.3689 | |||
C2 | 0.05 | ≤1 | 0.1498 | 10 | 0.2649 | 20 | 0.2996 | 100 | 0.3800 | |||
C3 | 20 | ≤100 | 0.1609 | 300 | 0.2708 | 700 | 0.3555 | 900 | 0.3807 | |||
C4 | 0.12 | ≤0.5 | 0.1427 | 1 | 0.2120 | 3 | 0.3219 | 10 | 0.4423 | |||
C5 | 1.2 | ≤5 | 0.1427 | 20 | 0.2813 | 30 | 0.3219 | 100 | 0.4423 |
Table 3 Actual values cj, normalized values x′j of indices for typhoon disaster loss of 6 typhoon disasters in Guangdong Province
台风编号 | C1 | C2 | C3 | C4 | C5 | |||||||||
c1 | x′1 | c2 | x′2 | c2 | x′2 | c4 | x′4 | c5 | x′5 | |||||
0104 | 29.17 | 0.3373 | 26 | 0.3127 | 712.34 | 0.3573 | 1.09 | 0.2206 | 28.78 | 0.3177 | ||||
0114 | 11.27 | 0.2422 | 4 | 0.2191 | 21.27 | 0.0062 | 1 | 0.212 | 7.89 | 0.1883 | ||||
0220 | 5.14 | 0.1637 | 0 | 0.0000 | 64.35 | 0.1169 | 0.08 | 0.0000 | 0.78 | 0.0000 | ||||
0604 | 30.9 | 0.3431 | 123 | 0.3904 | 779 | 0.3662 | 12.12 | 0.4615 | 143.67 | 0.4785 | ||||
0606 | 35.18 | 0.3560 | 46 | 0.3412 | 473.5 | 0.3164 | 2.49 | 0.3033 | 66.27 | 0.4011 | ||||
9710 | 27.9 | 0.3329 | 71 | 0.3629 | 913.4 | 0.3821 | 2.3 | 0.2953 | 32.18 | 0.3289 |
Table 4 Assessment results of 6 typhoon disasters loss in Guangdong Province by NV-PPR model and Hopfield neural network
台风编号 | NV-PPR模型 | 5个NV-PPR (2) | 5个NV-PPR (3) | PPR (2) 和PPR (3) | Hopfield神经网络 模型评价级别 |
|||||||
平均值 | 级别 | 平均值 | 级别 | 平均值 | 级别 | 平均值 | 级别 | |||||
0104 | 0.4838 | 3 | 0.4982 | 3 | 0.4934 | 3 | 0.4958 | 3 | 大灾 | |||
0114 | 0.2588 | 2 | 0.2797 | 2 | 0.2770 | 2 | 0.2784 | 2 | 小灾 | |||
0220 | 0.0680 | 1 | 0.0904 | 1 | 0.0896 | 1 | 0.0900 | 1 | 微灾 | |||
0604 | 0.6372 | 4~5 | 0.6575 | 5 | 0.6512 | 5 | 0.6544 | 5 | 巨灾 | |||
0606 | 0.5377 | 4 | 0.5538 | 4 | 0.5485 | 4 | 0.5512 | 4 | 大灾 | |||
9710 | 0.5366 | 4 | 0.5486 | 4 | 0.5434 | 4 | 0.5460 | 4 | 大灾 |
Table 5 Grading standards of lightning disaster loss indices
指标 | cj0 | k=1(一般) | k=2(较重) | k=3(严重) | k=4(特重) | |||||||
cj1 | x′j1 | cj2 | x′j2 | cj3 | x′j3 | cj4 | x′j4 | |||||
C1 | 2.5 | 5 | 0.1386 | 7.5 | 0.2197 | 15 | 0.3584 | 20 | 0.4159 | |||
C2 | 25 | 50 | 0.1386 | 75 | 0.2197 | 150 | 0.3584 | 200 | 0.4159 | |||
C3 | 1.2 | 2 | 0.1022 | 3.5 | 0.2141 | 7.5 | 0.3665 | 10 | 0.4241 | |||
C4 | 1.2 | 2 | 0.1022 | 3.5 | 0.2141 | 7.5 | 0.3665 | 10 | 0.4241 | |||
C5 | 25 | 50 | 0.1386 | 75 | 0.2197 | 150 | 0.3584 | 200 | 0.4159 | |||
C6 | 12 | 67 | 0.1720 | 200 | 0.2813 | 500 | 0.3729 | 667 | 0.4018 | |||
C7 | A | 0.17 | B | 0.25 | D | 0.33 | E | 0.40 | ||||
注:A表示古迹受到轻微破坏,容易修复;B表示古迹受到较为严重破坏,可以修复但有一定难度;D表示古迹受到严重破坏,小部分损毁古迹无法修复;E表示古迹受到严重破坏,部分损毁古迹无法修复。 |
[1] |
Schmidt S, Kemfert C, Hoppe P.The impact of social-economics and climate change on tropical cyclone losses in the USA.Regional Environmental Change, 2010, 10(1):13-23. doi: 10.1007/s10113-008-0082-4
|
[2] |
Xiao Fengjin, Xiao Zinin.Characteristics of tropical cyclones in China and their impacts analysis.Nat Hazards, 2010, 54:827-837. doi: 10.1007/s11069-010-9508-7
|
[3] |
Zhang Q, Wu L, Lin Q.Troptical cyclone damages in China 1983-2006.Bull Amer Meteor Soc, 2009, 90(4):489-495. doi: 10.1175/2008BAMS2631.1
|
[4] |
Jose I B.Major flood disasters in Europe:1950-2005.Nat Hazards, 2007, 42:125-148. doi: 10.1007/s11069-006-9065-2
|
[5] |
叶殿秀, 赵珊珊, 王有民, 等.2012年我国主要气象灾害回顾.灾害学, 2013, 28(3):128-132. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201303025.htm
|
[6] |
陈联寿.热带气象灾害及其研究进展.气象, 2010, 36(7):101-110. doi: 10.7519/j.issn.1000-0526.2010.07.017
|
[7] |
张蕾, 霍治国, 黄大鹏.等.10—11月海南省瓜菜苗期湿涝风险评估与区划.应用气象学报, 2015, 26(4):432-441. doi: 10.11898/1001-7313.20150405
|
[8] |
李莉, 匡绍敏, 莫建飞, 等.广西甘蔗秋旱灾害风险评估技术初步研究.应用气象学报, 2016, 27(1):95-101. doi: 10.11898/1001-7313.20160110
|
[9] |
Nalbantis I, Tsakiris G.Assessment of hydrological drought revisited.Water Resources Management, 2009, 23(5):881-897. doi: 10.1007/s11269-008-9305-1
|
[10] |
Ologunorisa T E.An assessment of flood vulnerability zones in the Niger delta Nigeria.Inter J Environ Studies, 2004, 61(1):31-38. doi: 10.1080/0020723032000130061
|
[11] |
李祚泳, 杨怀金, 燕鹏.基于免疫进化算法优化的灾情评估指数公式及效果检验.高原气象, 2004, 23(4):553-557. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200404021.htm
|
[12] |
李芬, 于文金, 张建新, 等.干旱灾害评估研究进展.地理科学进展, 2011, 30(7):891-898. doi: 10.11820/dlkxjz.2011.07.015
|
[13] |
张容焱, 徐宗焕, 游立军, 等.福建热带气旋风雨空间分布特征及风险评估.应用气象学报, 2012, 23(6):672-682. doi: 10.11898/1001-7313.20120604
|
[14] |
侯威, 杨杰, 赵俊虎.不同时间尺度下气象旱涝强度评估指数.应用气象学报, 2013, 24(6):695-703. doi: 10.11898/1001-7313.20130606
|
[15] |
Choi K S, Kim D W, Byun H R.Statistical model for seasonal prediction of tropical cyclone frequency in the mid-latitudes of East Asia.Theoritical Application Climate, 2010, 102(1):105-114. https://www.cabdirect.org/cabdirect/abstract/20103300664
|
[16] |
Hamid S, Golam K B M, Gulati S, et al.Predicting losses of residential structures in the state of Florida by the public hurricane loss evaluation model.Statistical Methodology, 2010, 7(5):552-573. doi: 10.1016/j.stamet.2010.02.004
|
[17] |
闫敏慧, 姚秀萍, 王蕾, 等.用层次分析法确定气象服务评价指标权重.应用气象学报, 2014, 25(4):470-475. doi: 10.11898/1001-7313.20140410
|
[18] |
卞洁, 李双林, 何金海.长江中下游地区洪涝灾害风险性评估.应用气象学报, 2011, 22(5):604-611. doi: 10.11898/1001-7313.20110511
|
[19] |
刘少军, 张京红, 何政伟, 等.改进的物元可拓模型在台风灾害预评估中的应用.自然灾害学报, 2012, 21(2):135-141. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201202019.htm
|
[20] |
欧阳蔚, 于艳青, 金菊良, 等.基于联系数的安徽省抗旱能力综合评价模型.人民黄河, 2014, 36(3):52-57. http://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201403019.htm
|
[21] |
刘德地, 陈晓宏.基于支持向量机的洪水灾情综合评价模型.长江流域资源与环境, 2008, 17(3):490-494. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY200803032.htm
|
[22] |
董四辉, 宿博, 赵宇库.基于投影寻踪技术的洪水灾情综合评价.中国安全科学学报, 2012, 22(12):64-69. http://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201212010.htm
|
[23] |
李祚泳, 徐源蔚, 汪嘉杨, 等.基于前向神经网络的广义环境系统评价普适模型.环境科学学报, 2015, 35(9):2996-3005. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201509043.htm
|
[24] |
陈仕鸿, 刘晓庆.基于离散型Hopfield神经网络的台风灾情评估模型.自然灾害学报, 2011, 20(5):47-52. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201105006.htm
|
[25] |
李家启, 秦健, 李良福, 等.雷电灾害评估及其等级划分.西南大学学报:自然科学版, 2010, 32(11):140-144. http://www.cnki.com.cn/Article/CJFDTOTAL-XNND201011028.htm
|