Qi Pengcheng, Zheng Dong, Zhang Yijun, et al. Climatological characteristics and spatio-temporal correspondence of lightning and precipitation over the Tibetan Plateau. J Appl Meteor Sci, 2016, 27(4): 488-497. DOI:  10.11898/1001-7313.20160412.
Citation: Qi Pengcheng, Zheng Dong, Zhang Yijun, et al. Climatological characteristics and spatio-temporal correspondence of lightning and precipitation over the Tibetan Plateau. J Appl Meteor Sci, 2016, 27(4): 488-497. DOI:  10.11898/1001-7313.20160412.

Climatological Characteristics and Spatio-temporal Correspondence of Lightning and Precipitation over the Tibetan Plateau

DOI: 10.11898/1001-7313.20160412
  • Received Date: 2015-11-23
  • Rev Recd Date: 2016-03-22
  • Publish Date: 2016-07-31
  • Based on the analysis of TRMM data from 1998 to 2013, climatological characteristics of lightning activities, precipitation and their relationships over the Tibetan Plateau are investigated. The largest densities of lightning are over the central and northeast parts of the Plateau, with the maximum lightning density over the central Plateau reaching 6.2 fl·km-2·a-1. Nevertheless, the strongest precipitation occurs over the southeast part of the Plateau where the value is above 800 mm·a-1. Both the lightning activity and precipition move westward in May and then retreat in September over the most parts of the Plateau, while the strong lightning activity over the northeast of the Plateau barely moves. Unlike the lightning activity, the precipitation shows a cascade change from southeast to northwest. In chosen specified areas, the lightning and precipitation show parallel changes, including their active periods from May to September and single peak patterns. Except for the west and southeast parts of the Plateau, the peak months of lightning and precipitation in other areas are the same. The geographic distribtuion of the rainfall per flash (RPF) is then investigated and exhibits that the minimum RPF appears over the central and west parts of the Plateau, ranging from 5×107 to 7×107 kg·fl-1. The maximum RPF reaches above 1×109 kg·fl-1 over the area along the Himalayas, stretching to the southeast part of the Plateau, and over the northern Plateau near the Kunlun Mountains. Combined with the analysis of TRMM precipitation features (PFs), it is exposed that the lightning can be the proxy of deep convective activity over the plateau, while RPF can effectively represent the percentage of deep convective systems in all precipitation systems. In this way, the mid-west and northeast parts of the Plateau account for the largest percentage of deep convective activities in the whole precipitation system, while the southeast parts of the Plateau account for the smallest percentage, indicating that most of the precipitation over the southeast parts of the Plateau might be contributed by warm clouds.
  • Fig. 1  Terrain of the Tibetan Plateau in the target area

    Fig. 2  Annual changes of lightning density and precipitation over the Tibetan Plateau

    (a) region 1, (b) region 2, (c) region 3, (d) region 4, (e) region 5

    Fig. 3  Lightning density and precipitation over the Tibetan Plateau

    (a) annual mean lightning density (unit:fl·km-2), (b) annual precipitation (unit:mm)

    Fig. 4  Monthly average lightning density over the Tibetan Plateau in Apr (a), May (b), Jun (c), Jul (d), Aug (e) and Sep (f)

    Fig. 5  Daily precipitation over the Tibetan Plateau in Apr (a), May (b), Jun (c), Jul (d), Aug (e) and Sep (f)

    Fig. 6  Monthly variations of daily lightning density and daily rain rate over the Tibetan Plateau in region 1(a), region 2(b), region 3(c), region 4(d) and region 5(e)

    Fig. 7  The distribution of RPF over Tibetan Plateau in the periods with frequent lightning activity from Apr to Sep

    Fig. 8  Spatial distribution of characteristics of PFs over the Tibetan Plateau

    (a) the ratio of the PFs with lightning to all the PFs, (b) the ratio of the PFs with 40 dBZ echo above 8 km to all PFs

  • [1]
    钱正安, 张世敏, 单扶民.青藏高原气象科学实验文集.北京:科学出版社, 1984.
    [2]
    陶诗言, 陈联寿, 徐祥德, 等.第二次青藏高原大气科学试验理论研究进展.北京:气象出版社, 1998.
    [3]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [4]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [5]
    戴建华, 秦虹, 郑杰.用TRMM/LIS资料分析长江三角洲地区的闪电活动.应用气象学报, 2005, 16(6):728-736. doi:  10.11898/1001-7313.20050613
    [6]
    王艳, 张义军, 马明.卫星观测的我国近海海域闪电分布特征.应用气象学报, 2010, 21(2):157-163. doi:  10.11898/1001-7313.20100204
    [7]
    王艳, 郑栋, 张义军.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. doi:  10.11898/1001-7313.20110308
    [8]
    张鸿发, 郭三刚, 张义军, 等.青藏高原强对流雷暴云分布特征.高原气象, 2004, 22(6):558-564. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200306005.htm
    [9]
    郄秀书, 袁铁, 谢毅然, 等.青藏高原闪电活动的时空分布特征.地球物理学报, 2005, 47(6):997-1002. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200406009.htm
    [10]
    Qie X S, Toumi R, Yuan T.Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor.J Geophys Res, 2003, 108(D17), 4551, doi: 10.1029/2002JD-003304.
    [11]
    Singh P, Nakamura K.Diurnal variation in summer precipitation over the central Tibetan Plateau.J Geophys Res, 2009, 114(D20107), doi: 10.1029/2009JD011788.
    [12]
    Guo J, Zhai P, Wu L, et al.Diurnal variation and the influential factors of precipitation from surface and satellite measurements in Tibet.Inter J Climatol, 2014, 34(9):2940-2956. https://www.researchgate.net/profile/Jianping_Guo6/publication/259539193_Diurnal_variation_and_the_influential_factors_of_precipitation_from_surface_and_satellite_measurements_in_Tibet/links/576b597408ae6e772780bb05.pdf
    [13]
    白爱娟, 刘长海, 刘晓东.TRMM多卫星降水分析资料揭示的青藏高原及其周边地区夏季降水日变化.地球物理学报, 2008, 51(3):704-714. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200803012.htm
    [14]
    Boccippio D J, Koshak W J, Blakeslee R J.Performance assessment of the optical transient detector and lightning imaging sensor.PartⅠ:Predicted diurnal variability.J Atmos Ocean Technol, 2002, 19(9):1318-1332. doi:  10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
    [15]
    Cecil D J, Buechler D E, Blakeslee R J.Gridded lightning climatology from TRMM-LIS and OTD:Dataset description.Atmos Res, 2014, 135:404-414. http://www.doc88.com/p-0896921929484.html
    [16]
    崔绚, 周波涛, 周江兴, 等. TRMM产品3B43的中国区域降水气候特征评估//第26届中国气象学会年会预测与公共服务分会场论文集, 2009: 29-34.
    [17]
    Williams E R, Geotis S G, Renno N, et al.A radar and electrical study of tropical "hot towers".J Atmos Sci, 1992, 49(15):1386-1395. doi:  10.1175/1520-0469(1992)049<1386:ARAESO>2.0.CO;2
    [18]
    Petersen W A, Rutledge S A.On the relationship between cloud-to-ground lightning and convective rainfall.J Geophys Res:Atmospheres (1984-2012), 1998, 103(D12):14025-14040. doi:  10.1029/97JD02064
    [19]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.11898/1001-7313.20100304
    [20]
    Liu C, Zipser E J, Cecil D J, et al. A cloud and precipitation feature database from nine years of TRMM observations.Journal of Applied Meteorology and Climatology, 2008, 47(10):2712-2728. doi:  10.1175/2008JAMC1890.1
    [21]
    Zheng D, Zhang Y, Meng Q, et al.Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy.Adv Atmos Sci, 2016, 33(3):365-376. doi:  10.1007/s00376-015-5124-5
    [22]
    Soriano L R, De Pablo F, Díez E G.Relationship between convective precipitation and cloud-to-ground lightning in the Iberian Peninsula.Mon Wea Rev, 2001, 129(12):2998-3003. doi:  10.1175/1520-0493(2001)129<2998:RBCPAC>2.0.CO;2
    [23]
    Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J Atmos Sci, 1978, 35(8):1536-1548. doi:  10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
    [24]
    Saunders C P R, Peck S L.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions.J Geophys Res:Atmospheres, 1998, 103(D12):13949-13956. doi:  10.1029/97JD02644
    [25]
    Berdeklis P, List R.The ice crystal-graupel collision charging mechanism of thunderstorm electrification.J Atmos Sci, 2001, 58(18):2751-2770. doi:  10.1175/1520-0469(2001)058<2751:TICGCC>2.0.CO;2
    [26]
    Saunders C P R, Bax-Norman H, Emersic C, et al.Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification.Quar J Roy Meteor Soc, 2006, 132(621):2653-2673. doi:  10.1256/qj.05.218
    [27]
    Qie X, Wu X, Yuan T, et al.Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian Monsoon region based on TRMM Data.J Climate, 2014, 27(17):6612-6626. doi:  10.1175/JCLI-D-14-00076.1
  • 加载中
  • -->

Catalog

    Figures(8)

    Article views (4391) PDF downloads(520) Cited by()
    • Received : 2015-11-23
    • Accepted : 2016-03-22
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint