Tan Yongbo, Chen Zhilu, Zhang Dongdong, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. DOI:  10.11898/1001-7313.20160413.
Citation: Tan Yongbo, Chen Zhilu, Zhang Dongdong, et al. Simulation on the stroke protection distance of tall buildings to surrounding buildings. J Appl Meteor Sci, 2016, 27(4): 498-505. DOI:  10.11898/1001-7313.20160413.

Simulation on the Stroke Protection Distance of Tall Buildings to Surrounding Buildings

DOI: 10.11898/1001-7313.20160413
  • Received Date: 2015-11-15
  • Rev Recd Date: 2016-02-18
  • Publish Date: 2016-07-31
  • Lightning is a kind of strong discharge phenomena in the atmosphere. It has a great impact on human living space especially cloud-to-ground lightning, making it widely concerned. Through a large number of lightning observation, the tip and the corner of tall buildings are usually striken rather than the relative low buildings and ground. The tall building can make surrounding atmospheric electric field produce a strong distortion effect, so that the tip and the corner of tall buildings trigger upward leader easier, connected with the downward leader. Numerous studies on single building attachment process are carried out, while in real urban environment, buildings are not isolated, and therefore, shielding effects between multiple buildings and the relationship between stroke protection distance of building and the related characteristic parameters of buildings are discussed.On the basis of the existing parameterization scheme of leader attachment process, a region near the ground is selected as study area, by changing spatial forms of lightning while keeping the other basic parameters constant. A series of lightning simulation experiment is conducted in the context of distribution of the same buildings. Results show that under the distribution of multiple buildings, the tall building is more intense in the environmental electric field distortion than the low building, upward leader is easier to be triggered. Meanwhile, the tall building has a shielding effect to the low building, and has a critical value of protection distance of the effect of low building, when the distance between tall building and low building is under the critical, the low building is safe from stroke, otherwise, the rate of low building being stroke has a upward trend. In addition, the result comes out that the critical value of protection distance and the height of tall building is positively correlated, and the height of low building is negatively correlated. Finally, the relationship between the critical value of protection distance and the building height is fitted, providing a reference value for lightning protection designing work.
  • Fig. 1  Sketch of simulation structure

    Fig. 2  Lightning progression forms

    (a) random parameter is 14, (b) random parameter is 56, (c) random parameter is 92

    Fig. 3  Plot of potential distribution (unit:kV)

    Fig. 4  Changes of lightning frequency of low buildings with distance between buildings

    Fig. 5  Changes of the critical value of protection distance SL with the height of low building H2 under conditions of different height of tall buildings

    Fig. 6  Changes of the critical value of protection distance SL with the height of tall building H1 under conditions of different height of low buildings

    Table  1  Constant values of fitting equation of SL and H2 under conditions of different height of tall buildings

    H1/m a b R2
    170 209.3235 -1.4098 0.987
    190 223.5980 -1.3079 0.968
    210 307.70 -1.6137 0.966
    DownLoad: Download CSV

    Table  2  Constant values of fitting equation of SL and H1 under conditions of different height of low buildings

    H2/m a b R2
    90 -143.102 1.426 0.947
    110 -173.789 1.471 0.964
    130 -245.392 1.727 0.947
    DownLoad: Download CSV
  • [1]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [2]
    马明, 吕伟涛, 张义军, 等.1997—2006年我国雷电灾情特征.应用气象学报, 2008, 19(4):393-400. doi:  10.11898/1001-7313.20080402
    [3]
    Hartono Z, Robiah I.A Method of Identifying the Lightning Strike Location on a Structure.International Conference on Electromagnetic Compatibility.Kuala Lumpur, Malaysia, 1995:112-117. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470030186.html
    [4]
    Hartono Z, Robiah I.The Collection Surface Concept as a Reliable Method for Predicting the Lightning Strike Location.The 25th International Conference on Lightning Protection.Rhodes, Greece, 2000:328-333. https://www.researchgate.net/publication/283692564_The_collection_surface_concept_as_a_reliable_method_for_predicting_the_lightning_strike_location
    [5]
    D'Alessandro F.The use of "Field Intensification Factors" in calculations for lightning protection of structures.Journal of Electrostatics, 2003, 58:17-43. doi:  10.1016/S0304-3886(02)00178-X
    [6]
    邵程远. 建筑物雷击概率特性研究. 南京: 南京信息工程大学, 2011.
    [7]
    耿雪莹, 张其林, 刘明远, 等.地面建筑物 (群) 对雷暴云大气电场影响的模拟研究.气象科技, 2012, 40(5):827-833. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201205025.htm
    [8]
    孙安然, 行鸿彦.建筑群中矮建筑的雷击概率及接闪器设计.电子测量技术, 2012, 35(6):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-DZCL201206004.htm
    [9]
    建筑物防雷设计规范GB50057-2010. 北京: 中国计划出版社, 2011.
    [10]
    Szczerbinski M.A discussion of "Faraday cage" lightning protection and application to real building structures.Journal of Electrostatics, 2000, 48(2):145-154. doi:  10.1016/S0304-3886(99)00062-5
    [11]
    Baba Y, Rakov V.Electromagnetic fields at the top of a tall building associated with nearby lightning return strokes.IEEE Transactions on Electromagnetic Compatibility, 2007, 49(3):632-643. doi:  10.1109/TEMC.2007.902402
    [12]
    任晓毓, 张义军, 吕伟涛, 等.雷击建筑物的先导连接过程模拟.应用气象学报, 2010, 21(4):450-457. doi:  10.11898/1001-7313.20100408
    [13]
    周璧华, 姜慧, 杨波, 等.地物环境对地面大气电场测量的影响.电波科学学报, 2010, 25(5):839-844. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201005005.htm
    [14]
    任晓毓, 张义军, 吕伟涛, 等.闪电先导随机模式的建立与应用.应用气象学报, 2011, 22(2):194-202. doi:  10.11898/1001-7313.20110208
    [15]
    郭秀峰, 谭涌波, 郭凤霞, 等.建筑物尖端对大气电场畸变影响的数值计算.应用气象学报, 2013, 24(2):189-196. doi:  10.11898/1001-7313.20130207
    [16]
    谭涌波, 张冬冬, 郭秀峰, 等.轴对称建筑物形状对电场畸变影响的数值模拟.电波科学学报, 2014, 29(6):1219-1224. http://www.cnki.com.cn/Article/CJFDTOTAL-DBKX201406035.htm
    [17]
    Petrov N I, Waters R T.Determination of the Striking Distance of Lightning to Earthed Structures.Proceedings of the Royal Society A, 1995, 450(1940):589-601. doi:  10.1098/rspa.1995.0102
    [18]
    Goelian N, Lalande P, Bondiou-Clergerie A, et al.A simplified model for the simulation of positive-spark development in long air gaps.Journal of Physics D Applied Physics, 1997, 30(17):2441-2452. doi:  10.1088/0022-3727/30/17/010
    [19]
    Mazur V, Ruhnke L H, Bondiou-Clergerie A, et al.Computer simulation of a downward negative stepped leader and its interaction with a ground structure.J Geophys Res:Atmospheres, 2000, 105(D17):22361-22369. doi:  10.1029/2000JD900278
    [20]
    Mazur V, Ruhnke L H.Evaluation of the Lightning Protection System at the WSR-88D Radar Sites.National Oceanic and Atmospheric Administration Final Report, 2001:1-53. https://www.scribd.com/document/140113597/Progress-CurrentEffects-Lightning-Flashes-i2t
    [21]
    Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception.IEEE Transactions on Power Delivery, 2006, 21(2):897-908. doi:  10.1109/TPWRD.2005.859290
    [22]
    Becerra M, Cooray V.A self-consistent upward leader propagation model.Journal of Physics D Applied Physics, 2006, 39(16):3708-3715. doi:  10.1088/0022-3727/39/16/028
    [23]
    Mansell E R, Macgorman D R, Ziegler C L, et al.Simulated three-dimensional branched lightning in a numerical thunderstorm model.J Geophys Res:Atmospheres, 2002, 107(D9):ACL 2-1-ACL 2-12. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.597.1655
    [24]
    Tan Y B, Tao S C.Fine-resolution simulation of the channel structures and propagation features of intracloud lightning.Geophys Res Lett, 2006, 33(9):179-212. https://www.researchgate.net/publication/251429784_Fine-resolution_simulation_of_the_channel_structures_and_propagation_features_of_intracloud_lightning
    [25]
    谭涌波, 陶善昌, 祝宝友, 等.雷暴云内闪电双层、分枝结构的数值模拟.中国科学:D辑, 2006, 36(5):486-496. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200605010.htm
    [26]
    谭涌波, 陶善昌, 祝宝友, 等.云闪放电对云内电荷和电位分布影响的数值模拟.地球物理学报, 2007, 50(4):1053-1065. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200704013.htm
    [27]
    谭涌波, 张冬冬, 周博文, 等.地闪近地面形态特征的数值模拟.应用气象学报, 2015, 26(2):211-220. doi:  10.11898/1001-7313.20150209
    [28]
    Eriksson A.The Lightning Ground Flash:An Engineering Study.Faculty of Engineering, University of Natal, Pretoria, 1979. https://www.scribd.com/document/21698628/Analysis-of-Insulator-Strings-for-69-kV-and-115-kV
    [29]
    Becerra M, Cooray V.On the velocity of positive connecting leaders associated with negative downward lightning leaders.Geophys Res Lett, 2008, 35(2):196-199. http://adsabs.harvard.edu/abs/2008GeoRL..35.2801B
    [30]
    Mousa A M.Validity of the Collection Volume Method/field Intensification Method for the Placement of Lightning Rods on Buildings.The 26th International Conference on Lightning Protection, 2002:1-6.
    [31]
    郭立新, 李江挺, 韩旭彪, 等.计算物理学.西安:西安电子科技大学出版社, 2009.
    [32]
    谭涌波, 师正, 王宁宁, 等.随机性与电环境特征对地闪击地点影响的数值模拟.地球物理学报, 2012, 55(11):3534-3541. doi:  10.6038/j.issn.0001-5733.2012.11.003
    [33]
    Becerra M, Cooray V, Hartono Z A.Identification of lightning vulnerability points on complex grounded structures.Journal of Electrostatics, 2007, 65(9):562-570. doi:  10.1016/j.elstat.2006.12.003
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (3279) PDF downloads(464) Cited by()
    • Received : 2015-11-15
    • Accepted : 2016-02-18
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint