Shi Lan, Xu Lina, Hao Yuzhu. The correction of forecast wind speed in a wind farm based on partitioning of the high correlation of wind speed. J Appl Meteor Sci, 2016, 27(4): 506-512. DOI:  10.11898/1001-7313.20160414.
Citation: Shi Lan, Xu Lina, Hao Yuzhu. The correction of forecast wind speed in a wind farm based on partitioning of the high correlation of wind speed. J Appl Meteor Sci, 2016, 27(4): 506-512. DOI:  10.11898/1001-7313.20160414.

The Correction of Forecast Wind Speed in a Wind Farm Based on Partitioning of the High Correlation of Wind Speed

DOI: 10.11898/1001-7313.20160414
  • Received Date: 2015-12-02
  • Rev Recd Date: 2016-03-02
  • Publish Date: 2016-07-31
  • In order to improve precision and accuracy of wind speed forecast and wind power prediction, and taking unstable factors of observations on the wind turbines into account, a refined and partitioned correction model is established for improving the quality of wind speed forecast on turbine hub height. The wind farm A, which is located in the middle of Inner Mongolia of China, is selected as the target area. Fine analysis on gradient observation, the terrain and the layout of the wind turbines is carried out, and the hourly quality-controlled wind data on the wind tower and the turbine hub height are comprehensive compared, considering the spatial-temporal correlation, deviation of wind tower and turbine wind speed, seasonal influences and wind directions (NW, SW, NE, SE). Wind turbine groups are partitioned by wind speed subsequently in wind farm A. Characteristics of wind speed of wind tower and groups that are affected by turbulence, wake flow and wake superposition are studied. Using the method of Kalman filter, through direct (from numerical model to turbine groups directly) and indirect (from numerical model to the wind tower firstly, and then to the turbine groups) correction schemes, wind speed correction is done, respectively.Results show that the division of wind turbine groups in every wind speed is high correlative. The indirect correction of turbine groups using the gradient observation of the wind tower can correct wind speed forecast more effectively than model forecast and direct correction. Correlation (R) and the absolute value of error (E) between corrected wind speed of indirect correction and observed wind speed are improved by different degrees in each wind turbine group. R increases from 0.18-0.72 to 0.67-0.91, and E is reduced from 1.6-2.9 m·s-1 to 1.0-1.5 m·s-1 after indirect correction, compared to R increasing to 0.39-0.87 and E decreasing to 1.2-2.1 m·s-1 after direct correction. In addition, the indirect correction scheme plays a very good role in controlling the E of the low velocity section ( < 3 m·s-1) and the high speed section (>9 m·s-1). The indirect correction scheme performs better when the difference between forecast wind speed and observed wind speed are relatively larger. Therefore, this method has is a good reference for improving prediction precision and accuracy, and it should be tested and spread to more wind farms in the service.
  • Fig. 1  Annual wind speed characteristics of wind tower at wind farm A from Nov 2011 to Oct 2012

    (a) average wind speed (unit:m·s-1), (b) frequency distribution

    Fig. 2  The correlation coefficient and absolute value of error comparisons between numerical model forecast, direct correction, indirect correction and observed wind speed of turbine groups

    (a) NE wind direction, (b) NW wind direction, (c) SE wind direction, (d) SW wind direction

    Fig. 3  The absolute value of error comparisons between direct correction and indirect correction of each wind speed range of turbine groups

    (a) NE wind direction, (b) NW wind direction, (c) SE wind direction, (d) SW wind direction

    Fig. 4  The incremental ratio of correlation coefficient after indirect correction

    (a) NE wind direction, (b) NW wind direction, (c) SE wind direction, (d) SW wind direction

    Fig. 5  The drop ratio of average absolute value of error after indirect correction

    (a) NE wind direction, (b) NW wind direction, (c) SE wind direction, (d) SW wind direction

    Table  1  The division of wind turbine groups of similar characteristic month in different wind directions

    风向 片区类型
    东北 NE1(1—3月) NE2(4—7月) NE3(8—10月) NE4(11—12月)
    西北 NW1(1, 3月) NW2(2, 4—5, 12月) NW3(6—9月) NW4(10—11月)
    东南 SE1(1—4月, 12月) SE2(5—8月) SE3(9—11月)
    西南 SW1(11—12月, 1—2月) SW2(3月) SW3(4—7月) SW4(8—10月)
    DownLoad: Download CSV
  • [1]
    柳艳香, 陶树旺, 张秀芝.风能预报方法研究进展.气候变化研究进展, 2008, 4(4):209-214. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH200804005.htm
    [2]
    石岚, 徐丽娜, 郝玉珠, 等.BJ-RUC在内蒙古某风电场的风速预报检验分析.干旱区地理, 2015, 38(3):510-516. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201503011.htm
    [3]
    徐晶晶, 胡非, 肖子牛, 等.风能模式预报的相似误差订正.应用气象学报, 2013, 24(6):731-740. doi:  10.11898/1001-7313.20130610
    [4]
    Guo Z H, Zhao J, Zhang W Y, et al.A corrected hybrid approach for wind speed prediction in Hexi Corridor of China.Energy, 2011, 36:1668-1679. doi:  10.1016/j.energy.2010.12.063
    [5]
    迟德忠. 基于数值气象模式和关联规则优化的风电场短期预报方法. 兰州: 兰州大学, 2012.
    [6]
    Costa A, Crespo A, Navarro J, et a1.A review on the young history of the wind power short-term predietion.Renewable and Sustainable Energy Reviews, 2008, 12(6):1725-1744. doi:  10.1016/j.rser.2007.01.015
    [7]
    黄凤新, 刘寿东, 祝赢, 等.基于滚动极值处理的BP神经网络方法的WRF模式预报风速订正.科学技术与工程, 2013, 13(7):1768-1772. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201307014.htm
    [8]
    任宏利, 丑纪范.统计-动力相结合的相似误差订正法.气象学报, 2005, 63(6):731-740. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200506014.htm
    [9]
    黄凤新. 基于卡尔曼滤波的复杂地形WRF模式预报风速订正. 南京: 南京信息工程大学, 2013.
    [10]
    江滢, 宋丽莉, 程兴宏.风电场风速预报集合订正方法的尝试性研究.资源科学, 2013, 35(3):673-680. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201303027.htm
    [11]
    江滢, 罗勇, 赵宗慈.近50年我国风向变化特征.应用气象学报, 2008, 19(6):666-672. doi:  10.11898/1001-7313.20080605
    [12]
    张明洁, 赵艳霞.北方地区日光温室气候适宜性区划方法.应用气象学报, 2013, 24(3):278-286. doi:  10.11898/1001-7313.20130303
    [13]
    彭春华, 黄志勇, 崔新强, 等.木兰湖风速历史资料的模拟生成方法.应用气象学报, 1998, 9(3):383-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980356&flag=1
    [14]
    李莉, 刘永前, 杨勇平, 等.基于CFD流场预计算的短期风速预测方法.中国电机工程学报, 2013, 33(7):27-32. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201307003.htm
    [15]
    周荣卫, 何晓凤, 朱蓉.MM5/CALMET模式系统在风能资源评估中的应用.自然资源学报, 2010, 25(12):2101-2113. doi:  10.11849/zrzyxb.2010.12.011
    [16]
    许杨, 陈正洪, 杨宏青, 等.风电场风电功率短期预报方法比较.应用气象学报, 2013, 24(5):625-630. doi:  10.11898/1001-7313.20130512
    [17]
    陆如华, 徐传玉, 张玲, 等.卡尔曼滤波的初值计算方法及其应用.应用气象学报, 1997, 8(1):34-43. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970105&flag=1
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (3963) PDF downloads(535) Cited by()
    • Received : 2015-12-02
    • Accepted : 2016-03-02
    • Published : 2016-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint