Quan Chen, Chen Bin, Zhao Tianliang, et al. Application of lagrange water vapor source diagnosis method to the Three-river Source Area. J Appl Meteor Sci, 2016, 27(6): 688-697. DOI:  10.11898/1001-7313.20160605.
Citation: Quan Chen, Chen Bin, Zhao Tianliang, et al. Application of lagrange water vapor source diagnosis method to the Three-river Source Area. J Appl Meteor Sci, 2016, 27(6): 688-697. DOI:  10.11898/1001-7313.20160605.

Application of Lagrange Water Vapor Source Diagnosis Method to the Three-river Source Area

DOI: 10.11898/1001-7313.20160605
  • Received Date: 2016-03-06
  • Rev Recd Date: 2016-07-07
  • Publish Date: 2016-11-30
  • The Three-river Source (TRS) region locating at the Tibet Plateau hinterland, contains a huge resources, gives birth to several world famous rivers, and supplies fresh water resources for East Asia. Identification of the regional moisture source is of great significance for understanding of regional water budget and improving the ability of water resources management. Ensemble modeling method is used with the three-dimensional Lagrangian transport model FLEXPART (Flexible Particle Model), driven by the GFS (Global Forecast System) reanalysis data (four times one day) from NCEP/NCAR. Then, the water vapor transport and source identification technology is used to identify the main moisture source for TRS region, with consideration of the spesific humidity changes along their transport pathways. The result indicates that a large number of air parcels experience several surface-atmosphere water vapor cycle process before reaching the TRS region. Dominated by the moisture transport form the prevailing westerlies and the central Asia strong evaporation, moisture sources characterized by relative short time transport (less than 6 days) mainly come from the Tibetan Plateau and its northwest edge, while the moisture sources with longer time (8-10 days) can be traced backward to the Arabian Sea, the Bay of Bengal, and so on. The water vapor reaching the TRS region transport can roughly be categorized to two pathways: The first is along the Somali to the Arabian Sea water vapor transport across the equator, and the second is the west path controlled by the west wind, transport from central Asia and west Asia to TRS region. Quantitative analysis shows that the moisture source also exhibits obvious sub-seasonal variability during the summer, characterized by the leading source area located in the west side of TRS region in June, and the Arabian Sea in July. However, the contribution from the Arabian Sea decreases and the contribution from the Bay of Bengal increases in August. Throughout the summer, the North of the Plateau maintains a stable water vapor transport.
  • Fig. 1  The summer seasonal mean (July-August) of E-P calculated using all parcels reaching the TRS region

    Fig. 2  The summer seasonal mean particle distribution density averaged as a percentage of particles for precious 10 days before reaching the TRS region (numbers are binned on 1°×1° lat-lon grid)

    Fig. 3  The mean distribution of 10-day integrated E-P in summer from 2007 to 2009 calculated by all particles reaching the TRS region determined from backtracking

    Fig. 4  The potential water vapor source region

    Fig. 5  he temporal variation of four different moisture source contribution with backward 10-day tracking in summer

  • [1]
    李吉均.高原隆升与第四纪冰川研究.北京:科学出版社, 2004.
    [2]
    Xu X D, Lu C, Shi X H, et al.World water tower:An atmospheric perspective.Geophys Res Lett, 2008, 35 (20):525-530. doi:  10.1029/2008GL035867/references
    [3]
    Lu C, Yu G, Xie G.Tibetan Plateau serves as a water tower.IEEE International Geoscience and Remote Sensing Symposium, 2005, 5:3120-3123. http://ieeexplore.ieee.org/document/1526498/authors
    [4]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17 (6):711-724. doi:  10.11898/1001-7313.20060609
    [5]
    苗秋菊, 徐祥德, 张胜军.长江流域水汽收支与高原水汽输送分量"转换"特征.气象学报, 2005, 63 (2):93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200501010.htm
    [6]
    徐祥德, 陶诗言, 王继志, 等.青藏高原——季风水汽输送"大三角扇形"影响域特征与中国区域旱涝异常的关系.气象学报, 2002, 60 (3):257-267. doi:  10.11676/qxxb2002.032
    [7]
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17 (6):756-772. doi:  10.11898/1001-7313.20060613
    [8]
    杨建平, 丁永健, 刘时银, 等.长江黄河源区冰川变化及其对河川径流的影响.自然资源学报, 2003, 18 (5):595-602. doi:  10.11849/zrzyxb.2003.05.012
    [9]
    戴升, 李林.1961—2009年三江源区气候变化特征分析.青海气象, 2011 (1):20-26. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201606006.htm
    [10]
    廖荣伟, 赵平.东亚季风湿润区水分收支的气候特征.应用气象学报, 2010, 21 (6):649-658. doi:  10.11898/1001-7313.20100602
    [11]
    Schneider E K, Kirtman B P, Lindzen R S.Tropospheric water vapor and climate sensitivity.J Atmos Sci, 1999, 56 (11):1649-1658. doi:  10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2
    [12]
    陈烈庭.青藏高原冬春季异常雪盖与江南前汛期降水关系的检验和应用.应用气象学报, 1998, 9 (增刊Ⅰ):2-9. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.000.htm
    [13]
    李生辰, 李栋梁, 赵平, 等.青藏高原"三江源区"雨季水汽输送特征.气象学报, 2009, 67 (4):591-598. doi:  10.11676/qxxb2009.059
    [14]
    王可丽, 程国栋, 丁永建.黄河、长江源区降水变化的水汽输送和环流特征.冰川冻土, 2006, 28 (1):8-14. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200601001.htm
    [15]
    杨伟愚, 叶笃正, 吴国雄.夏季青藏高原热力场和环流场的诊断分析Ⅰ.盛夏高原西部的水汽状况.大气科学, 1992, 16 (1):41-52. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199201005.htm
    [16]
    Anita D, Raquel N, Luis G, et al.A Lagrangian identification of major source of moisture over Central Brazil and La Plata Basin.J Geophys Res, 2008, 113 (D14):762-770. doi:  10.1029/2007JD009547/full
    [17]
    Gangoiti G, Gómez-Domenech I, Sáez de Cámara E, et al.Oringin of the water vapor responsible for the European extreme rainfalls of August 2002:2.A new methodology to evaluate evaporative moisture sources, applied to the August 11-13 central European rainfall episode.J Geophys Res, 2011, 116 (C11):1-16.
    [18]
    Xu X, Zhao T, Lu C, et al.An important mechanism sustaining the atmospheric "water tower" over the Tibetan Plateau.Atmos Chem Phys Discuss, 2014, 14 (12):18255-18275. doi:  10.5194/acpd-14-18255-2014
    [19]
    田立德, 姚檀栋, 孙维贞, 等.青藏高原南北降水中δD和δ18O关系及水气循环.中国科学:地球科学, 2001, 31 (3):214-220.
    [20]
    Chen Bin, Xu Xiangde, Yang Shuai, et al.On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau.Theoretical and Applied Climatology, 2012, 110 (3):423-435. doi:  10.1007/s00704-012-0641-y
    [21]
    许健民, 郑新江, 徐欢, 等.GMS-5水汽图像所揭示的青藏高原地区对流层上部水汽分布特征.应用气象学报, 1996, 7 (2):246-251. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960236&flag=1
    [22]
    缪启龙, 张磊, 丁斌.青藏高原近40年的降水变化及水汽输送分析.气象与减灾研究, 2007, 30 (1):14-18. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO200701002.htm
    [23]
    董立清, 任金声, 徐瑞珍, 等.黄河中游强暴雨过程的中低纬度环流特征和水汽输送.应用气象学报, 1996, 7 (2):160-168. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960225&flag=1
    [24]
    Stohl A, James P.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part Ⅰ:Method description, validation, and demonstration for the August 2002 flooding in central Europe.Journal of Hydrometeoroglogy, 2004, 5 (4):656-678. doi:  10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2
    [25]
    Stohl A, James P.A Lagrangian analysis of the atmospheric branch of the global water cycle.Part Ⅱ:Moisture transports between earth's ocean basins and river catchments.Journal of Hydrometeorolgy, 2005, 6 (6):961-984. doi:  10.1175/JHM470.1
    [26]
    成新喜, 陆汉城, 周祖刚, 等.对流层大气运动的Lagrange方法及应用.应用气象学报, 2000, 11 (1):105-114. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2000&filename=YYQX200001014&v=MDUyOThSOGVYMUx1eFlTN0RoMVQzcVRyV00xRnJDVVJMMmZZK2RvRnl2aFZMdk1QRFRhZHJHNEh0SE1ybzlFWUk=
    [27]
    Winschall A, Pfahl S, Sodemann H, et al.Comparison of Eulerian and Lagrangian moisture source diagnostics the flood event in eastern Europe in May 2010.Atmos Chem Phys Discuss, 2013, 14 (13):29333-29373. http://www.atmos-chem-phys.net/14/6605/2014/acp-14-6605-2014-metrics.html
    [28]
    Andreas S, Paul J.A Lagrangian Analysis of the Atmospheric branch of the global water cycle.Part 1: Method description, validation, and demonstration for the August 2002 flooding in central Europe.Journal of Hydrometeorology, 2004, 5 (8):656-678. doi:  10.1175/1525-7541%282004%29005<0656%3AALAOTA>2.0.CO%3B2
    [29]
    Raquel N, Duran-Quesada A M, Luis G.Major sources of moisture for Antarctic ice-core sites identified through a Lagrangian approach.Climate Research, 2010, 41 (1):45-49. http://www.int-res.com/abstracts/cr/v41/n1/p45-49/
    [30]
    陈斌, 徐祥德, 施晓晖.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区.气象学报, 2011, 69 (5):810-818. doi:  10.11676/qxxb2011.071
  • 加载中
  • -->

Catalog

    Figures(5)

    Article views (2181) PDF downloads(318) Cited by()
    • Received : 2016-03-06
    • Accepted : 2016-07-07
    • Published : 2016-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint