Cao Yueyao, Zhang Peng, Ma Gang, et al. An improvement of brightness temperature simulation of FY-3 IRAS infrared water vapor channel. J Appl Meteor Sci, 2016, 27(6): 698-708. DOI:  10.11898/1001-7313.20160606.
Citation: Cao Yueyao, Zhang Peng, Ma Gang, et al. An improvement of brightness temperature simulation of FY-3 IRAS infrared water vapor channel. J Appl Meteor Sci, 2016, 27(6): 698-708. DOI:  10.11898/1001-7313.20160606.

An Improvement of Brightness Temperature Simulation of FY-3 IRAS Infrared Water Vapor Channel

DOI: 10.11898/1001-7313.20160606
  • Received Date: 2016-03-07
  • Rev Recd Date: 2016-06-03
  • Publish Date: 2016-11-30
  • Forward modeling of satellite atmospheric sounding instruments is the foundation of satellite data assimilation and inversion. Currently, more uncertainties on the accuracy of infrared water vapor channel are still exist compared with temperature detection channel. A method based on the group training of profiles which are classified by their water content of air column is used, to try to improve the forward modeling accuracy in the water vapor channel. Determination of threshold value is based on principles of basic balance profile numbers after group classification. Many threshold values are utilized to classify profiles, only results of threshold for 0.045 kg·m-2 are detailed and analyzed, which lead to quite similar experiment results. TIGR 43 profile library is used as the training sample to get coefficients for fast radiative transfer computation and NESDIS 35 profile library is used to test the precision improvement as the independent sample.Different coefficients got from the group training are used to establish RTTOV forward model of FY-3 IRAS and the channel brightness temperature is calculated using the corresponding profile and coefficients. The forward modeling accuracy of the FY-3 IRAS brightness temperature is get by comparison with line-by-line results, which are considered as accurate and reliable. Research results show accuracy improvement of the brightness temperature after group training. Improvement shows better in the low water content profile case, which up to 0.17 K in the 0.045 kg·m-2 threshold experiment. Further analysis is executed to find the cause for the improvement in the group training experiment. The layer water vapor predictor optical depth of channel 11-13 are calculated and comparison is done between the forward model with and without group training. Results show better consistency of water vapor absorption and channel weighting function distribution, besides, the absorption of water vapor line and continuum is adjusted more reasonable considering the weighting function height. These provide positive influence on the improvement of forward modeling results.It puts forward a method which can improve the fast radiative calculation accuracy of infrared water vapor channel, further work should be done in respect of bias caused by the precision of water vapor molecule absorption line parameters and the input water vapor profile self error. Furthermore, it merely considers the water content of air column, the potential influence caused by the shape of the profile is out of consideration, which may be the cause for the negative effect in channel 13 and research direction of future work.
  • Fig. 1  FY-3 IRAS forward modeling channel brightness temperature result using fast radiative transmittance coefficients and USSA-1976 (θ=0°)

    Fig. 2  FY-3 IRAS forward modeling channel weighting functions using fast radiative transmittance coefficients and USSA-1976 (θ=0°)

    (a) near 15 μm temperature detection channel 1-7, (b) ozone detection channel 10 and water vapor detection channel 11-13, (c) near 4.5 μm temperature detection channel 14-18, (d) near 13 μm surface detection channel 8-9 and near 4 μm surface detection channel 19-20

    Fig. 3  Forward modeling brightness temperature of FY-3 IRAS using NESDIS 35 profile library

    Fig. 4  Water content of air column per square meter of TIGR 43 and NESDIS 35 profile library

    (a) TIGR 43 profile library, (b) NESDIS 35 profile library

    Fig. 5  Relative accuracy test using TIGR 43 profile library

    (a) standard deviation of brightness temperature of high water content selected, (b) standard deviation of brightness temperature of low water content selected

    Fig. 6  Relative accuracy test using NESDIS 35 profile library

    (a) standard deviation of brightness temperature of high water content selected, (b) standard deviation of brightness temperature of low water content selected

    Fig. 7  Layer optical depth of channel 11 using high water content selected from NESDIS 35 profile library

    Fig. 8  Layer optical depth of channel 12 using high water content selected from NESDIS 35 profile library

    Fig. 9  Layer optical depth of channel 13 using high water content selected from NESDIS 35 profile library

    Table  1  The comparison of standard deviation between experiments with or without group training of different threshold values (positive values for improvement)

    阈值/(kg·m-2) 训练前后高水汽含量廓线的标准差差值/K 分组训练前后低水汽含量廓线的标准差差值/K
    通道11 通道12 通道13 通道11 通道12 通道13
    0.025 0.0387 0.0364 -0.0010 0.0202 0.0395 0.2444
    0.045 0.0267 0.0269 0.0012 0.0100 0.0246 0.1772
    0.05 0.0195 0.0174 -0.0039 0.0189 0.0297 0.1738
    0.1 0.0131 0.0131 -0.0073 0.0189 0.0258 0.0954
    DownLoad: Download CSV
  • [1]
    漆成莉, 陈勇, 刘辉, 等.风云三号B星红外分光计的定标和验证.气象科技进展, 2013, 3 (4):60-70. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201304013.htm
    [2]
    漆成莉, 董超华, 张文建, 等.风云三号 (A) 气象卫星红外分光计大气透射率计算试验.红外与毫米波学报, 2005, 24 (3):203-206. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFD2005&filename=HWYH200503009&v=MzE2MTVrVkxySUxUclNackc0SHRUTXJJOUZiWVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUkwyZlkrZG9GeTM=
    [3]
    张华, 石广玉.一种快速高效的逐线积分大气吸收计算方法.大气科学, 2000, 24 (1):111-121. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200001011.htm
    [4]
    张华, 石广玉, 刘毅.两种逐线积分辐射模式大气吸收的比较研究.大气科学, 2005, 29 (4):581-593. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200504008.htm
    [5]
    Larry M M, Henry E F.Atmospheric transmittance of an absorbing gas.Ⅰ:A computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres.Appl Opt, 1976, 15 (2):358-363. doi:  10.1364/AO.15.000358
    [6]
    Larry M M, Henry E F.Atmospheric transmittance of an absorbing gas.Ⅱ:A computationally fast and accurate transmittance model for slant paths at different zenith angles.Appl Opt, 1977, 16 (5):1366-1370. doi:  10.1364/AO.16.001366
    [7]
    Larry M M, Henry E F.Atmospheric transmittance of an absorbing gas.Ⅲ:A computationally fast and accurate transmittance model for absorbing gases with variable mixing ratios.Appl Opt, 1979, 18 (10):1600-1606. doi:  10.1364/AO.18.001600
    [8]
    马刚, 邱崇践, 黎光清, 等.利用RTTOV7快速辐射传输模式模拟风云二号红外和水汽成像通道辐射率的研究.红外与毫米波学报, 2006, 25 (1):37-40. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200601010.htm
    [9]
    Jonathan R E, Harold M W.Transmittance of atmospheric gases in the microwave region:A fast model.Appl Opt, 1988, 27 (15):3244-3249. doi:  10.1364/AO.27.003244
    [10]
    Eyre J R.A Fast Radiative Transfer Model for Satellite souNding Systems.ECMWF Research Dept Tech Memo, 1991:176. doi:  10.1029/2006JD008208/full#references
    [11]
    Rayer P J.Fast transmittance model for satellite sounding.Applied Optics, 1995, 34 (31):7387-7394. doi:  10.1364/AO.34.007387
    [12]
    Rizzi R.Matricardi M.The use of TOVS clear radiances for numerical weather prediction using an updated forward model.Quart J Royal Meteor Soc, 1998, 124 (548):1293-1312. doi:  10.1002/(ISSN)1477-870X
    [13]
    Saunders R, Matricardi M, Brunel P.An improved fast radiative transfer model for assimilation of satellite radiance observations.Quart J Royal Meteor Soc, 1999, 125 (556):1407-1425. doi:  10.1002/qj.497.v125:556
    [14]
    Matricardi M, Chevallier F, Kelly G.An improved general fast radiative transfer model for the assimilation of radiance observations.Quart J Royal Meteor Soc, 2004, 130 (596):153-173. doi:  10.1256/qj.02.181
    [15]
    Saunders R.RTTOV-7 Science and Validation Report.NWP Technical Report, 2002.
    [16]
    赵从龙, 蔡化庆, 宋玉东, 等.对流层水汽和液态水的地基微波遥感探测.应用气象学报, 1991, 2 (2):200-207. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910226&flag=1
    [17]
    李成才, 毛节泰.GPS地基遥感大气水汽总量分析.应用气象学报, 1998, 9 (4):470-477. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980469&flag=1
    [18]
    黄意玢, 董超华.用940 nm通道遥感水汽总量的可行性试验.应用气象学报, 2002, 13 (2):184-192. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020224&flag=1
    [19]
    何平, 徐宝祥, 周秀骥, 等.地基GPS反演大气水汽总量的初步试验.应用气象学报, 2002, 13 (2):169-183. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020222&flag=1
    [20]
    张弓, 许健民, 黄意玢.用FY-1C两个近红外太阳反射光通道的观测数据反演水汽总含量.应用气象学报, 2003, 14 (4):385-394. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030448&flag=1
    [21]
    胡秀清, 黄意玢, 陆其峰, 等.利用FY-3A近红外资料反演水汽总量.应用气象学报, 2011, 22 (1):46-56. doi:  10.11898/1001-7313.20110105
    [22]
    马刚.FY3大气垂直探测器辐射资料的同化应用及研究.兰州:兰州大学, 2008:64-65.
    [23]
    杨军, 董超华.新一代风云极轨气象卫星业务产品及应用.北京:科学出版社, 2011:12-20.
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(1)

    Article views (2334) PDF downloads(372) Cited by()
    • Received : 2016-03-07
    • Accepted : 2016-06-03
    • Published : 2016-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint