He Jieying, Zhang Shengwei. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. DOI:  10.11898/1001-7313.20160607.
Citation: He Jieying, Zhang Shengwei. In-orbit performance analysis on monitoring typhoon with FY-3B/MWHS. J Appl Meteor Sci, 2016, 27(6): 709-715. DOI:  10.11898/1001-7313.20160607.

In-orbit Performance Analysis on Monitoring Typhoon with FY-3B/MWHS

DOI: 10.11898/1001-7313.20160607
  • Received Date: 2015-11-25
  • Rev Recd Date: 2016-08-09
  • Publish Date: 2016-11-30
  • Fengyun 3B meteorological satellite (FY-3B) is the second generation polar-orbiting meteorological satellite, which is launched on 5 Nov 2010. Microwave humidity sounder (MWHS) is one important sensor onboard FY-3B and begins to work since 11 Nov 2011. MWHS is a five-channel total power microwave radiometer, which has 3 channels operating at 183 GHz and two dual-polarized channels working at 150 GHz (window frequencies).For channels of 150 GHz and 183.31 GHz, the angle resolution is 1.1°, making the resolution 15 km at nadir pixel. One motor drives two separated reflectors for 5 channels, and the scanning period is 2.667 s. Main beams of the antenna scan over the observing swath (±53.35° from nadir, 2600 km) at a constant periodicity of 1.71 s. During each period, two-point calibration is performed to calibrate the receiver gain and noise.A quantitative evaluation on the stability of the MWHS post-launch performance is carried out, which indicates the MWHS onboard FY-3B is improved comparing with that on FY-3A. Case assessment shows the MWHS can provide typhoon information, including the procedure of generating, developing and weakening as well as the rainfall caused by typhoon. During typhoon Linfa, Chan-hom and Nangka in 2015, high quality data are achieved, and the typhoon eye areas are clearly monitored with the aid of FY-3B MWHS.For precipitation, the scattering at frequencies around 150 GHz (dual-polarized) and 183 GHz result in significant brightness temperature depressions. According to the distributions of brightness temperature differences of channel 1 minus channel 5, channel 1 minus channel 2, and channel 3 minus channel 5, the precipitation and rain detection can be derived using neural network method. These quantitative assessment may provide reference for application of MWHS observations.
  • Fig. 1  Sensitivity values of FY-3B/MWHS

    Fig. 2  Calibration accuracy series of calibration targets of FY-3B/MWHS

    Fig. 3  Comparison of brightness temperature between FY-3B/MWHS and NOAA-17/AMSU-B

    Fig. 4  Typhoon Linfa, Chan-hom and Nangka in 2015 monitored by FY-3B/MWHS

    Fig. 5  Landing process of typhoon Linfa in 2015 monitored by FY-3B/MWHS

    Fig. 6  Procedure of rainfall retrievals

    Fig. 7  Rainfall retrievals

    Fig. 8  Comparison of precipitation rate between retrievals and radar observation

    Table  1  Performance characteristics for FY-3B/MWHS

    通道序号 中心频率/GHz 主要吸收气体 单边带宽/MHz NEDT/K 接收机工作方式
    1 150(H) 窗区 1000 1.1 双边带
    2 150(V) 窗区 1000 1.1 双边带
    3 183.31±1 H2O 500 1.2 双边带
    4 183.31±3 H2O 1000 1.1 双边带
    5 183.31±7 H2O 2000 1.2 双边带
    DownLoad: Download CSV

    Table  2  Deviation analysis between FY-3B/MWHS and NOAA-17/AMSU-B

    全球匹配区域 通道1 通道2 通道3 通道4 通道5
    亮温偏差/K -1.68 0.47 0.62 -2.37
    DownLoad: Download CSV
  • [1]
    张升伟, 李靖, 姜景山, 等.风云三号卫星微波湿度计的系统设计与研制.遥感学报, 2008, 12(2):199-207. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS200702004.htm
    [2]
    谷松岩, 王振占, 李靖, 等.风云三号A星微波湿度计主探测通道辐射特性.应用气象学报, 2010, 21(3):335-342. doi:  10.11898/1001-7313.20100309
    [3]
    张淼, 卢乃锰, 谷松岩, 等.风云三号 (02) 批卫星微波氧气吸收通道降水特性.应用气象学报, 2012, 23(2):223-230. doi:  10.11898/1001-7313.20120211
    [4]
    He Jieying, Zhang Shengwei, Wang Zhenzhan.Advanced microwave atmospheric sounder (AMAS) channel specifications and T/V calibration results on FY-3C satellite.IEEE Transactions on Geosciences and Remote Sensing, 2015, 53(1):1481-1493. http://www.irgrid.ac.cn/handle/1471x/1011419?mode=full&submit_simple=Show+full+item+record
    [5]
    孙婧, 程光光, 张小玲, 等.一种改进的数值预报降水偏差订正方法及应用.应用气象学报, 2015, 26(2):173-184. doi:  10.11898/1001-7313.20150205
    [6]
    何杰颖, 张升伟.FY-3A星MWHS反演中纬度和热带大气水汽.遥感学报, 2012, 16(3):562-578. doi:  10.11834/jrs.20120286
    [7]
    Surussavadee C, Staelin D H.Comparison of AMSU millimeter-wave satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models for hydrometeors.IEEE Transactions on Geoscience and Remote Sensing, 2006, 10(44):2667-2678. http://cat.inist.fr/?aModele=afficheN&cpsidt=18198003
    [8]
    车云飞, 马舒庆, 杨玲, 等.云对地基微波辐射计反演湿度廓线的影响.应用气象学报, 2015, 26(2):193-202. doi:  10.11898/1001-7313.20150207
    [9]
    董佩明, 王海军, 韩威, 等.水物质对云雨区卫星微波观测模拟影响.应用气象学报, 2009, 20(6):682-691. doi:  10.11898/1001-7313.20090605
    [10]
    黄兴友, 张曦, 冷亮, 等.基于MonoRTM模型的微波辐射计反演方法研究.气象科学, 2013, 33(2):138-145. doi:  10.3969/2012jms.0127
    [11]
    马刚, 方宗义, 张凤英.云参数对RTTOV5模式模拟误差的影响分析.应用气象学报, 2001, 12(4):385-392. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX200104000.htm
    [12]
    方翔, 王新.风云卫星高时空分辨率资料在热带气旋监测预报中的应用.气象科技, 2014, 42(4):647-656. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ201404021.htm
    [13]
    杜明斌, 杨引明, 杨玉华, 等.FY-3A微波资料偏差订正及台风路径预报应用.应用气象学报, 2012, 23(1):89-95. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201201014.htm
    [14]
    刘元波, 傅巧妮, 宋平, 等.卫星遥感反演降水研究综述.地球科学进展, 2011, 26(11):1162-1172. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201111008.htm
    [15]
    崔林丽, 杨引明, 游然, 等.FY-3A/MWHS数据在定量降水估计中的应用研究.高原气象, 2012, 31(5):1439-1445. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201205028.htm
    [16]
    何杰颖, 张升伟.FY-3A星MWHS反演中纬度和热带大气水汽.遥感学报, 2012, 16(3):562-578. doi:  10.11834/jrs.20120286
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(2)

    Article views (2941) PDF downloads(390) Cited by()
    • Received : 2015-11-25
    • Accepted : 2016-08-09
    • Published : 2016-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint