Qian Yong, Zhang Yang, Zhang Yijun, et al. Characteristics and simulation of artificially triggered lightning precursor current pulse. J Appl Meteor Sci, 2016, 27(6): 716-724. DOI:  10.11898/1001-7313.20160608.
Citation: Qian Yong, Zhang Yang, Zhang Yijun, et al. Characteristics and simulation of artificially triggered lightning precursor current pulse. J Appl Meteor Sci, 2016, 27(6): 716-724. DOI:  10.11898/1001-7313.20160608.

Characteristics and Simulation of Artificially Triggered Lightning Precursor Current Pulse

DOI: 10.11898/1001-7313.20160608
  • Received Date: 2016-04-30
  • Rev Recd Date: 2016-07-18
  • Publish Date: 2016-11-30
  • During summers from 2010 to 2014, two kinds of rocket are used for artificially triggered lightning experiments in Guangzhou Field Experiment Site for Lightning Research and Testing. Based on the analysis upon current data of 25 classical rocket-and-wire triggered lightings, it can be confirmed that the unipolar precursor pulse is generated from the lightning triggered by copper wire, while the unipolar precursor pulse is generated from the lightning triggered by steel wire. As for the unipolar precursor pulse, the geometric mean (GM) values of peak current, rise time, duration of waveform and charge transfer are 26 A, 0.33 μs, 2.3 μs and 27 μC, respectively. While for the bipolar precursor pulse, the corresponding values are 67 A, 0.24 μs, 2.1 μs and 54 μC, respectively. The GM value of peak current for bipolar precursor pulse is close to 2.6 times that of the unipolar precursor pulse, however, GM values of duration and rise time are similar. Furthermore, the channel base current waveforms generated from copper and steel line are simulated by using the transmission line model. The simulated waveform is consistent with the observed one. The channel base current waveforms exhibit a bipolar oscillation, which can be caused by the obviously small characteristic impedance for copper wire than the grounding block. It is confirmed that the two forms of current waveform are caused by the difference between characteristics impedance of transmission line and grounding system. Precursor pulses are known that can be attributed to the superposition between the channel top current pulses and the bottom reflected current pulses. The current flows into the grounding system. If the characteristic impedance of transmission line doesn't match with the characteristic impedance of grounding system, the current will reflect at the connecting point between the transmission line and grounding system. With larger difference between the characteristic impedance of transmission line and grounding system, the reflection is more obvious. As a contrast, the characteristic impedance of steel wire is close to that of grounding system, which leads to weak reflection. Therefore, the current at the channel bottom generated from triggered lightning with steel wire is the same as the top current. The current pulses generated by the upward leader initial discharge at the top of the transmission line are unipolar. The conclusion is also verified by simulation results.
  • Fig. 1  Artificially triggered lightning current measurement schematic

    Fig. 2  Bipolar precursor current pulse

    Fig. 3  Unipolar precursor current pulse

    Fig. 4  Parameters of the current pulse

    Fig. 5  Two polarity precursor current pulse parameter distributions

    (a) peak current, (b) charge transfer, (c) time of duration, (d) half peak width, (e) 10%-90% rise time, (f) 10%-90% slope

    Fig. 6  Channel bottom unipolar current pulse

    Fig. 7  Simulation results of two kinds of transmission line channel bottom current waveforms

    (a) simulation results of 0.2 mm copper wire, (b) simulation results of 0.2 mm steel wire

    Table  1  Unipolar precursor current pulse waveform parameters of the artificial triggered lightning

    单极性脉冲 Ip/A T10/μs S10/(kA·μs-1) TW/μs Q/μC THPW/μs
    算术平均值 28 0.39 0.08 2.4 30 0.81
    几何平均值 26 0.33 0.06 2.3 27 0.73
    标准偏差 13 0.25 0.07 0.7 12 0.38
    最大值 131 1.75 0.64 4.7 69 3.12
    最小值 13 0.08 0.01 1.0 8 0.16
    中值 24 0.32 0.06 2.4 29 0.75
    DownLoad: Download CSV

    Table  2  Bipolar precursor current pulse waveform parameters of the artificial triggered lightning

    双极性脉冲 Ip/A T10/μs S10/(kA·μs-1) TW/μs Q/μC THPW/μs
    算术平均值 78 0.28 0.55 2.2 73 0.88
    几何平均值 67 0.24 0.25 2.1 54 0.70
    标准偏差 43 0.22 0.35 0.7 66 0.63
    最大值 201 1.28 1.68 5.4 302 2.35
    最小值 22 0.07 0.02 0.8 13 0.15
    中值 71 0.17 0.30 2.4 52 0.64
    DownLoad: Download CSV

    Table  3  Simulated numerical results

    模拟结果 初始电流 铜线 钢丝
    测量结果 模拟结果 测量结果 模拟结果
    电流峰值/A 28 69 68 25 26
    波形持续时间/μs 2.8 1.8 1.6 2.1 2.6
    10%~90%上升时间/μs 0.2 0.18 0.21 0.19 0.2
    DownLoad: Download CSV
  • [1]
    Zhang Y, Zhang Y J, Zheng D, et al.Preliminary breakdown, following lightning discharge processes and lower positive charge region.Atmos Res, 2015, 161-162:52-56. doi:  10.1016/j.atmosres.2015.03.017
    [2]
    李俊, 张义军, 吕伟涛, 等.一次多回击自然闪电的高速摄像观测.应用气象学报, 2008, 19(4):401-411. doi:  10.11898/1001-7313.20080403
    [3]
    蒋如斌, 郄秀书, 杨静, 等. 人工触发闪电起始阶段上行正先导的光学和电流特征//S13第十届防雷减灾论坛——雷电灾害与风险评估, 2012.
    [4]
    Edens H E, Eack K B, Eastvedt E M, et al.VHF lightning mapping observations of a triggered lightning flash.Geophys Res Lett, 2012, 39(19):L19807, doi: 10.1029/2012GL053666.
    [5]
    王彩霞, 郄秀书, 蒋如斌, 等.一次人工触发闪电上行正先导的传输特征.物理学报, 2012, 61(3):553-560. http://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201203080.htm
    [6]
    王道洪, 郄秀书, 郭昌明.雷电与人工引雷.上海:上海交通大学出版社, 2000:1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [7]
    陈渭民.雷电学原理.北京:气象出版社, 2003:289-292. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [8]
    李俊, 吕伟涛, 张义军, 等.一次多分叉多接地的空中触发闪电过程.应用气象学报, 2010, 21(1):95-100. doi:  10.11898/1001-7313.20100113
    [9]
    Willett J C, Davis D A, Laroche P.An experimental study of positive leaders initiating rocket-triggered lightning.Atmos Res, 1999, 51(3):189-219. http://www.sciencedirect.com/science/article/pii/S0169809599000083
    [10]
    Horii K.Experiment of Artificial Lightning Triggered with Rocket.Mem Fac Eng, Nagoya Univ Japan, 1982, 34:77-112.
    [11]
    Biagi C J, Jordan D M, Uman M A, et al.High-speed video observations of rocket-and-wire initiated lightning.Geophys Res Lett, 2009, 36(15):L15801, doi: 10.1029/2009GL038525.
    [12]
    Biagi C J, Uman M A, Hill J D, et al.Transient current pulses in rocket-extended wires used to trigger lightning.Journal of Geophysical Research:Atmospheres (1984-2012), 2012, 117(D7):D07205, doi: 10.1029/2011JD016161.
    [13]
    Biagi C J, Uman M A, Hill J D, et al.Observations of the initial, upward propagating, positive leader steps in a rocket and wire triggered lightning discharge.Geophys Res Lett, 2011, 38(24):L24809, doi: 10.1029/2011GL049944.
    [14]
    Lalande P, Bondiou-Clergerie A, Laroche P, et al.Leader properties determined with triggered lightning techniques.Journal of Geophysical Research:Atmospheres (1984-2012), 1998, 103(D12):14109-14115. doi:  10.1029/97JD02492
    [15]
    Jiang R, Qie X, Wang C, et al.Propagating features of upward positive leaders in the initial stage of rocket-triggered lightning.Atmos Res, 2013, 129:90-96. https://www.researchgate.net/publication/257035892_Propagating_features_of_upward_positive_leaders_in_the_initial_stage_of_rocket-triggered_lightning
    [16]
    Zhang Y, Yang S, Lu W, et al.Experiments of artificially triggered lightning and its application in Conghua, Guangdong, China.Atmos Res, 2014, 135-136(1):330-343. http://www.sciencedirect.com/science/article/pii/S0169809513000719
    [17]
    张义军, 杨少杰, 吕伟涛, 等.2006—2011年广州人工触发闪电观测试验和应用.应用气象学报, 2012, 23(5):513-522. doi:  10.11898/1001-7313.20120501
    [18]
    Zheng D, Zhang Y, Lu W, et al.Characteristics of return stroke currents of classical and altitude triggered lightning in GCOELD in China.Atmos Res, 2013, 129:67-78. http://www.sciencedirect.com/science/article/pii/S0169809512004279
    [19]
    谢盟, 张阳, 张义军, 等.两种类型M分量物理特征和机制对比.应用气象学报, 2015, 26(4):451-459. doi:  10.11898/1001-7313.20150407
    [20]
    郄秀书, 杨静, 蒋如斌, 等.新型人工引雷专用火箭及其首次引雷实验结果.大气科学, 2010, 34(5):937-946. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201005008.htm
    [21]
    周方聪, 张义军, 吕伟涛, 等.人工触发闪电连续电流过程与M分量特征.应用气象学报, 2014, 25(3):330-338. doi:  10.11898/1001-7313.20140309
    [22]
    肖桐, 张阳, 吕伟涛, 等.人工触发闪电M分量的电流与电磁场特征.应用气象学报, 2013, 24(4):446-454. doi:  10.11898/1001-7313.20130407
    [23]
    谢施君.负极性地闪雷击点选择过程的模拟试验及仿真模型研究.武汉:华中科技大学, 2013. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm
    [24]
    Rachidi F, Janischewskyj W, Hussein A M, et al.Current and electromagnetic field associated with lightning-return strokes to tall towers.IEEE Transactions on Electromagnetic Compatibility, 2001, 43(3):356-367. doi:  10.1109/15.942607
    [25]
    Rachidi F, Rakov V A, Nucci C A, et al.Effect of vertically extended strike object on the distribution of current along the lightning channel.Journal of Geophysical Research:Atmospheres (1984-2012), 2002, 107(D23):ACL 16-1-ACL 16-6. doi:  10.1029/2002JD002119
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(3)

    Article views (4100) PDF downloads(602) Cited by()
    • Received : 2016-04-30
    • Accepted : 2016-07-18
    • Published : 2016-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint