Yuan Ye, Zhu Shichao, Li Aihua. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. DOI:  10.11898/1001-7313.20160610.
Citation: Yuan Ye, Zhu Shichao, Li Aihua. Characteristics of raindrop falling process at the Mount Huang. J Appl Meteor Sci, 2016, 27(6): 734-740. DOI:  10.11898/1001-7313.20160610.

Characteristics of Raindrop Falling Process at the Mount Huang

DOI: 10.11898/1001-7313.20160610
  • Received Date: 2016-02-04
  • Rev Recd Date: 2016-06-13
  • Publish Date: 2016-11-30
  • Utilizing raindrop spectrum data recorded by PARSIVEL of April-Octomber from 2011 to 2012 at the top and foot of the Mount Huang, 17 precipitation cases are collected, which divided into convective cloud precipitation and stratiform cloud precipitation. Characteristics of raindrop spectrum in different height and cloud from 17 precipitation cases are analyzed.Observed results show that the average concentration of raindrops at the top of the mountain is higher than that at the foot of the mountain in both convective cloud and stratiform cloud precipitation, the average peak diameter and the average mass median diameter both increase during falling process, but average intensity and radar reflectivity both have a smaller change. Neither convective cloud nor stratiform cloud raindrop spectrum distribution broadens from top to foot of the Mount Huang, but the spectrum shapes of raindrop change from M-P (Marshall-Palmer) to Gamma. Raindrop loses at most bins when falling from top to foot of the mountain, the maximum loss appears at the third bin of raindrop spectrum, with the loss percentage exceeding 50%. The concentration of bigger raindrop of stratiform cloud begins at the 11th bin (with feature diameter of 1.375 mm) and convective cloud raindrop begin at the 13th bin (with feature diameter of 1.875 mm) increase during falling process. The increase amplitude is lower than 10% except the 12th bin (with features diameter of 1.625 mm) and the 13th bin of stratiform cloud raindrop, and the increase at these two bins are 10.8% and 11.9%, respectively. Evaporation accompanies with the whole falling process, which has bigger effects on small raindrops than big ones, leading to lower concentration of smaller raindrop at the foot of the mountain. These losses gradually reduce along with raindrop diameter increasing due to effects of coagulation process of raindrop become stronger along with raindrop diameter increasing. Therefore, these changes occurring during falling process may be caused by both evaporation and coagulation process of raindrop.
  • Fig. 1  Comparison of average raindrop spectrum at top and foot of the mountain

    (a) convection cloud, (b) stratiform cloud

    Fig. 2  Average raindrop concentration of diffirent cloud at top and foot of the mountain

    Table  1  Bin diameter of PARSIVEL

    通道 特征直径/mm
    3 0.312
    4 0.437
    5 0.562
    6 0.687
    7 0.812
    8 0.937
    9 1.062
    10 1.187
    11 1.375
    12 1.625
    13 1.875
    14 2.125
    15 2.375
    16 2.75
    17 3.25
    18 3.75
    19 4.25
    20 4.75
    21 5.5
    22 6.5
    23 7.5
    24 8.5
    DownLoad: Download CSV

    Table  2  Time and duration of sample

    采样序号 采样起始时间 采样终止时间 时长/min
    1 2011-06-13T22:00 2011-06-15T18:59 2700
    2 2011-06-24T15:00 2011-06-26T02:00 2100
    3 2011-08-03T05:01 2011-08-03T09:00 240
    4 2011-08-07T02:01 2011-08-07T16:00 840
    5 2011-08-09T16:00 2011-08-09T19:59 240
    6 2011-08-10T21:00 2011-08-12T09:59 2220
    7 2011-08-29T12:01 2011-08-31T14:00 3000
    8 2011-09-17T14:00 2011-09-18T02:59 780
    9 2011-10-24T01:00 2011-10-24T23:59 1380
    10 2012-04-20T10:00 2012-04-21T09:59 1440
    11 2012-04-23T21:00 2012-04-25T06:59 2040
    12 2012-05-07T20:01 2012-05-08T12:00 960
    13 2012-05-12T15:01 2012-05-13T07:00 960
    14 2012-05-23T00:00 2012-05-26T08:59 4860
    15 2012-06-10T19:00 2012-06-11T07:59 780
    16 2012-06-17T07:00 2012-06-18T13:59 1860
    17 2012-06-25T15:00 2012-06-28T04:59 3730
    DownLoad: Download CSV

    Table  3  Cloud and precipitation parameters at diffirent sites and cloud types

    站点 云型 样本量 平均数
    浓度/m-3
    平均雨强/
    (mm·h-1)
    平均含水量/
    (g·kg-1)
    平均反射率
    因子/dBZ
    平均峰值
    直径/mm
    平均质量半数
    直径/mm
    山顶站 对流云 912 1482 19.5 1.12 40.0 0.50 0.88
    山底站 对流云 897 1024 21.4 0.96 39.6 0.70 1.00
    山顶站 层云 19122 422 1.6 0.097 18.9 0.55 0.66
    山底站 层云 17017 269 1.7 0.09 19.6 0.64 0.72
    DownLoad: Download CSV
  • [1]
    Maki M, Keenan T D, Sasaki Y, et al.Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia.J Appl Meteor, 2001, 40(8):1393-1412. doi:  10.1175/1520-0450(2001)040<1393:COTRSD>2.0.CO;2
    [2]
    Bringi V N, Chandrasekar V, Hubbert J, et al.Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis.J Atmos Sci, 2003, 60(2):354-365. doi:  10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [3]
    Caracciolo C, Prodi F, Battaglia A, et al.Analysis of the moments and parameters of a gamma DSD to infer precipitation properties:A convective stratiform discrimination algorithm.Atmos Res, 2006, 80(2):165-186. http://adsabs.harvard.edu/abs/2006AtmRe..80..165C
    [4]
    Chu Y H, Su C L.An investigation of the slope-shape relation for Gamma raindrop size distribution.Journal of Applied Meteorology and Climatology, 2008, 47(10):2531-2544. doi:  10.1175/2008JAMC1755.1
    [5]
    Kirankumar N V P, Rao T N, Radhakrishna B, et al.Statistical characteristics of raindrop size distribution in southwest monsoon season.Journal of Applied Meteorology and Climatology, 2008, 47(2):576-590. doi:  10.1175/2007JAMC1610.1
    [6]
    Brown P S.Coalescence and breakup-induced oscillations in the evolution of the raindrop size distribution.J Atmos Sci, 1989, 46(9):1186-1192. doi:  10.1175/1520-0469(1989)046<1186:CABIOI>2.0.CO;2
    [7]
    Hu Z, Srivastava R C.Evolution of raindrop size distribution by coalescence, breakup, and evaporation:Theory and observations.J Atmos Sci, 1995, 52(10):1761-1783. doi:  10.1175/1520-0469(1995)052<1761:EORSDB>2.0.CO;2
    [8]
    Martinez D, Gori E G.Raindrop size distributions in convective clouds over Cuba.Atmos Res, 1999, 52(3):221-239. doi:  10.1016/S0169-8095(99)00020-4
    [9]
    Tokay A, Bashor P G, Habib E, et al.Raindrop size distribution measurements in tropical cyclones.Mon Wea Rev, 2008, 136(5):1669-1685. doi:  10.1175/2007MWR2122.1
    [10]
    何越, 何平, 林晓萌.基于双高斯拟合的风廓线雷达反演雨滴谱.应用气象学报, 2014, 25(5):570-580. doi:  10.11898/1001-7313.20140506
    [11]
    严采蘩, 陈万奎.对流层下部雨滴谱分布.应用气象学报, 1990, 1(2):191-197. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19900227&flag=1
    [12]
    安英玉, 金凤岭, 张云峰, 等.地面雨滴谱观测的图像自动识别方法.应用气象学报, 2008, 19(2):188-193. doi:  10.11898/1001-7313.20080234
    [13]
    柳臣中, 周筠臖, 谷娟, 等.成都地区雨滴谱特征.应用气象学报, 2015, 26(1):112-121. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150112&flag=1
    [14]
    金祺, 袁野, 纪雷, 等.安徽滁州夏季一次飑线过程的雨滴谱特征.应用气象学报, 2015, 26(6):725-734. doi:  10.11898/1001-7313.20150609
    [15]
    李淘, 阮征, 葛润生, 等.激光雨滴谱仪测速误差对雨滴谱分布的影响.应用气象学报, 2016, 27(1):25-34. doi:  10.11898/1001-7313.20160103
    [16]
    吴兑.关于雨滴在云下蒸发的数值试验.气象学报, 1990, 49(1):116-121. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199101017.htm
    [17]
    宫福久, 刘吉成, 李子华.三类降水云雨滴谱特征研究.大气科学, 1997, 21(5):607-614. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201402010.htm
    [18]
    刘红燕, 雷恒池.基于地面雨滴谱资料分析层状云和对流云降水的特征.大气科学, 2006, 30(4):693-702. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200604013.htm
    [19]
    张昊, 濮江平, 李靖, 等.庐山地区不同海拔高度降水雨滴谱特征分析.气象与减灾研究, 2011, 34(2):43-50. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201102006.htm
    [20]
    濮江平, 赵国强, 蔡定军, 等.Parsivel激光降水粒子谱仪及其在气象领域的应用.气象与环境科学, 2007, 30(2):3-8. http://www.cnki.com.cn/Article/CJFDTOTAL-HNQX200702000.htm
    [21]
    Chen B, Yang J, Pu J.Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China.J Meteor Soc Japan, Ser:Ⅱ, 2013, 91(2):215-227. doi:  10.2151/jmsj.2013-208
    [22]
    Testud J, Oury S, Black R A, et al.The concept of "normalized" distribution to describe raindrop spectra:A tool for cloud Physics and cloud remote sensing.J Applied Meteor, 2001, 40(6):1118-1140. doi:  10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2
    [23]
    Marzano F S, Cimini D, Montopoli M.Investigating precipitation microphysics using ground-based microwave remote sensors and disdrometer data.Atmos Res, 2010, 97(4):583-600. doi:  10.1016/j.atmosres.2010.03.019
  • 加载中
  • -->

Catalog

    Figures(2)  / Tables(3)

    Article views (4680) PDF downloads(432) Cited by()
    • Received : 2016-02-04
    • Accepted : 2016-06-13
    • Published : 2016-11-30

    /

    DownLoad:  Full-Size Img  PowerPoint