Wang Jincheng, Lu Huijuan, Han Wei, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. DOI:  10.11898/1001-7313.20170102.
Citation: Wang Jincheng, Lu Huijuan, Han Wei, et al. Improvements and performances of the operational GRAPES_GFS 3Dvar system. J Appl Meteor Sci, 2017, 28(1): 11-24. DOI:  10.11898/1001-7313.20170102.

Improvements and Performances of the Operational GRAPES_GFS 3DVar System

DOI: 10.11898/1001-7313.20170102
  • Received Date: 2016-03-22
  • Rev Recd Date: 2016-10-12
  • Publish Date: 2017-01-31
  • In recent years, the capability and stability of GRAPES (Global/Regional Assimilation and PrEdiction System) three-dimensional variation data assimilation system (3DVar) is upgraded and improved gradually in Numerical Weather Prediction Center of China Meteorological Administration. Improvements in analysis scheme and assimilating data technique for GRAPES 3DVar in the past two years are overviewed. Then the capability and performance of G-M3DVar latest version are evaluated by two-year length experiments. The accuracy and precision of G-M3DVar analyses is evaluated against radiosonde observation and ERA-Interim reanalysis and is compared with NCEP FNL and T639 analysis.Taken radiosonde data as a reference, the root mean square error and bias of pressure analyses of G-M3DVar are smaller than ERA-Interim reanalysis and NCEP FNL analysis data in all domains in both winter and summer seasons. The root mean square error and bias of u wind analysis of G-M3DVar are larger than ERA-Interim reanalysis and NCEP FNL analysis in the Tropics. However, in the Northern Hemisphere, the root mean square error and bias of u wind of G-M3DVar are similar to ERA-Interim below 250 hPa. In the Southern Hemisphere, the root mean squared error of u wind of G-M3DVar is the largest compared to EAR-Interim reanalysis and NCEP FNL analysis. For humidity field, the bias of G-M3DVar analysis is smaller than EAR-Interim reanalysis and NCEP FNL analysis in the middle and high troposphere, which means that the humidity analysis of G-M3DVar is much drier than ERA-Interim and NCEP FNL data especially in the middle and high troposphere. Taken ERA-Interim reanalysis data as a reference, the root mean square error of G-M3DVar analysis is smaller than the T639 analysis but larger than NCEP FNL analysis data for all fields excluded the humidity.In conclusion, the quality of G-M3DVar analysis is better than T639 analysis and satisfies requirements of operational run. In recent years, the gap of analyses between G-M3DVar and advanced numerical weather centers such as ECMWF keeps growing, although the accuracy of G-M3DVar analysis is improved significantly in the past two years. Much more focus and works should be paid in the following aspects. First, the background error covariance (BE) is estimated by National Meteorological Center of USA (NMC) method, which is static and climatological. The static and climatological BE is far from meeting requirements of the modern numerical weather prediction. Second, the quality control scheme for all observations in G-M3DVar is still relatively inexactly and incapable. Third, the bias correction scheme for microwave radiance in G-M3DVar is still static which has been proved to have some shortcomings.
  • Fig. 1  Mean and standard deviations of OMERA, OMEFNL and OMGRP on standard pressure in winter and summer over the North Hemisphere, the Tropics and the South Hemisphere (a) over the North Hemisphere in winter, (b) over the North Hemisphere in summer, (c) over the Tropics in winter, (d) over the Tropics in summer, (e) over the South Hemisphere in winter, (f) over the South Hemisphere in summer

    Fig. 2  The same as in Fig. 1, but for u wind

    Fig. 3  The same as in Fig. 1, but for relative humidity

    Fig. 4  The root mean square error of NCEP FNL, T639 and G-M3DVar analyses for geopotential height against ERA-Interim reanalysis over the North Hemisphere (a), the Tropics (b) and the South Hemisphere (c)(from 0000 UTC 1 Sep 2013 to 1800 UTC 31 August 2014)

    Fig. 5  The same as in Fig. 4, but for u wind

    Fig. 6  The same as in Fig. 4, but for specific humidity

    Table  1  Observations assimilated in the experiment by G-M3DVar

    资料种类 仪器 平台 同化要素
    常规观测 探空 气压,uv风分量,相对湿度
    地面 地表气压
    船舶 地表气压
    小球测风 uv风分量
    飞机 uv风分量,温度
    卫星 AMSU-A微波温度计 NOAA-15,NOAA-18,NOAA-19,Metop-A 亮温
    AIRS红外高光谱 AQUA 亮温
    GNSS掩星 COSMIC,GRAS,GRACE-A,TerraSAR-X 折射率
    云导风 uv风分量
    DownLoad: Download CSV
  • [1]
    陈德辉, 薛纪善.数值天气预报业务模式的现状与展望.气象学报, 2004, 62(5):623-633. http://www.cnki.com.cn/Article/CJFDTOTAL-BJNY201333172.htm
    [2]
    Xue Jishan.Progresses of researches on numerical weather prediction in China:1999-2002.Adv Atmos Sci, 2004, 21:467-474. doi:  10.1007/BF02915573
    [3]
    薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):602-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1
    [4]
    陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [5]
    张人禾, 沈学顺.中国国家级新一代业务数值天气预报系统GRAPES的发展.科学通报, 2008, 53(20):2393-2395. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820001.htm
    [6]
    薛纪善, 庄世宇, 朱国富, 等.GRAPES新一代全球/区域变分同化系统研究.科学通报, 2008, 53(20):2408-2417. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820003.htm
    [7]
    杨学胜, 胡江林, 陈德辉, 等.全球有限区域数值预报模式动力框架的试验验证.科学通报, 2008, 53(20):2418-2423. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820004.htm
    [8]
    陈德辉, 薛纪善, 杨学胜, 等.GRAPES新一代全球/区域多尺度统一数值预报模式总体设计研究.科学通报, 2008, 53(20):2396-2407. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200820002.htm
    [9]
    张华, 薛纪善, 庄世宇, 等.GRAPES三维变分同化系统的理想试验.气象学报, 2004, 62(1):31-41. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200401003.htm
    [10]
    庄世宇, 薛纪善, 朱国富, 等.GRAPES全球三维变分同化系统--基本设计方案与理想试验.大气科学, 2005, 29(6):872-884. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200506003.htm
    [11]
    薛纪善, 陈德辉.数值预报系统GRAPES的科学设计与应用.北京:科学出版社, 2008.
    [12]
    陈贤.GRAPES全球系统的研究发展.中国气象科学研究院年报, 2008:35-37. http://www.cqvip.com/QK/84217X/200801/32726045.html
    [13]
    庄照荣, 薛纪善, 陆慧娟, 等.全球GRAPES等压面三维变分分析预报循环系统及试验.高原气象, 2014, 33(3):666-674. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201403009.htm
    [14]
    黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050346&flag=1
    [15]
    刘艳, 薛纪善, 张林, 等.GRAPES全球三维变分同化系统的检验与诊断.应用气象学报, 2016, 27(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160101&flag=1
    [16]
    Courtier P, Thepaut J N, Hollingsworth A.A strategy for operational implementation of 4D-VAR, using an incremental approach.Quart J Roy Meteor Soc, 1994, 120:1367-1387. doi:  10.1002/(ISSN)1477-870X
    [17]
    王金成, 庄照荣, 韩威, 等.GRAPES全球变分同化背景误差协方差的改进及对分析预报的影响:背景误差协方差三维结构的估计.气象学报, 2014, 72(1):62-78. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401005.htm
    [18]
    Liu Yan, Xue Jishan.Assimilation of global navigation satellite radio occultation observations in GRAPES:Operational implementation.J Meteor Res, 2014, 28(6):1061-1074, DOI: 10.1007/s13351-014-4028-0.
    [19]
    Fornberg B.Generation of finite difference formulas on arbitrary spaced grids.Mathematics of Computations, 1988, 51:699-706. doi:  10.1090/S0025-5718-1988-0935077-0
    [20]
    Kleist D T, Parrish D F, Derber J C, et al.Introduction of the GSI into the NCEP global data assimilation system.Wea Forecasting, 2009, 24(6):1691-1705. doi:  10.1175/2009WAF2222201.1
    [21]
    王瑞春, 龚建东, 张林.GRAPES变分同化系统中动力平衡约束的统计求解.应用气象学报, 2012, 23(2):129-138. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120201&flag=1
    [22]
    王瑞春, 龚建东, 张林, 等.利用整层模式大气统计求解GR-APES-3DVar动力平衡约束的数值试验.热带气象学报, 2014, 30(4):633-642. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201404004.htm
    [23]
    王瑞春, 龚建东, 张林, 等.热带风压场平衡特征及其对GR-APES系统中同化预报的影响研究Ⅱ:动力与统计混合平衡约束方案的应用.大气科学, 2015, 39(6):1225-1236. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201506014.htm
    [24]
    Harris B A, Kelly G.A satellite radiance-bias correction scheme for data assimilation.Q J R Meteorol Soc, 2001, 127:1453-1468. doi:  10.1002/(ISSN)1477-870X
    [25]
    Derber J, Wu W.The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system.Mon Wea Rev, 1998, 126:2287-2299. doi:  10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
    [26]
    Han W.Constrained Variational Bias Correction for Satellite Radiance Assimilation.19th International TOVS Study Conference, Korea, 2014. http://cimss.ssec.wisc.edu/itwg/itsc/itsc20/program/PDFs/2Nov/session11b/11p_05_han.pdf
    [27]
    王金成, 龚建东, 王瑞春.GRAPES全球3D-Var中卫星微波温度计亮温的背景误差及在质量控制中的应用.气象学报, 2016, 74(3):397-409. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201603007.htm
    [28]
    王金成, 龚建东, 赵滨.一种新的COSMIC大气折射率资料观测误差估计方法及在GRAPES全球三维变分同化中的应用.气象学报, 2015, 73(1):142-158. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201501011.htm
    [29]
    郝民, 张华, 陶士伟, 等.变分质量控制在区域GRAPES-3DVAR中的应用研究.高原气象, 2013, 32(1):122-132. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201301014.htm
    [30]
    Dee D P, Uppala S M.The ERA-Interim reanalysis:Configuration and performances of the data assimilation system.Q J R Meteorol Soc, 2011, 137:553-597. doi:  10.1002/qj.v137.656
    [31]
    庄照荣, 薛纪善, 韩威, 等.探空观测黑名单检查在变分同化系统中的应用.应用气象学报, 2014, 25(3):274-283. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140303&flag=1
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(1)

    Article views (4424) PDF downloads(518) Cited by()
    • Received : 2016-03-22
    • Accepted : 2016-10-12
    • Published : 2017-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint