Chen Si, Gao Jianyun, Huang Lina, et al. Decadal variation characteristics of South China pre-flood season persistent rainstorm and its mechanism. J Appl Meteor Sci, 2017, 28(1): 86-97. DOI:  10.11898/1001-7313.20170108.
Citation: Chen Si, Gao Jianyun, Huang Lina, et al. Decadal variation characteristics of South China pre-flood season persistent rainstorm and its mechanism. J Appl Meteor Sci, 2017, 28(1): 86-97. DOI:  10.11898/1001-7313.20170108.

Decadal Variation Characteristics of South China Pre-flood Season Persistent Rainstorm and Its Mechanism

DOI: 10.11898/1001-7313.20170108
  • Received Date: 2016-04-21
  • Rev Recd Date: 2016-01-13
  • Publish Date: 2017-01-31
  • Based on the daily precipitation data of 243 stations in Fujian, Guangdong, Guangxi during 1961-2012, indices (intensity of daily rainstorm IRD, intensity of persistent rainstorm IRS, intensity of South China pre-flood season persistent rainstorm IRZ) are calculated and persistent rainstorm processes are selected. Indices reveal decadal variation characteristics of pre-flood season persistent rainstorm by kinds of mutation test and percentile method. It indicates that the decadal variation of pre-flood season persistent rainstorm can be divided into three sections, multiple (1961-1972)-fewer (1973-1991)-multiple (1992-2012). The present stage is in multiple sections with stronger intensity and longer duration; pre-flood season precipitation exhibits a significant low-frequency oscillation characteristic. The decadal variation of duration and intensity of persistent rainstorm during pre-flood season are closely related to that of configuration and intensity of low-frequency periodic signal. There is a positive correlation between the intensity of pre-flood season persistent rainstorm and the low-frequency intensity of 10-60 days with the intensity strongest in 10-20 days, the second in 30-60 days' and the third in 20-30 days'. The low-frequency signal of Guangdong and Fujian is more obvious than Guangxi in all sections. Frequent, strong and long persistent rainstorm is more likely to occur in multiple sections as the precipitation intensity of low-frequency signal oscillating acutely, and vice versa. The decadal meridional propagation features of tropical intraseasonal oscillation and mechanism and its possible impact on the decadal variation of pre-flood season persistent rainstorm are also studied by using East Asia-western NorthPacific ISO index (EAWNP ISO). The position of the meridional propagation of the East Asia-Pacific Northwest Pacific with different phases can be seen according to different phases' reconstruction of 850 hPa wind speed and OLR anomaly field. The decadal variation of tropical low-frequency northward movement signal cycle and intensity may probably be one of the main causes that lead to the decadal variation of pre-flood season persistent rainstorm. Since tropical low-frequency signal has various cycles, it may cause low-frequency variation of circulation system advantage to the precipitation of pre-flood season, which corresponds to the low-frequency variation characteristics of precipitation there and leading to changes of the intensity and duration of persistent rainstorm when low-frequency convection propagates northward to southeast coast of China. The longer (shorter) cycle and stronger (weaker) intensity of tropical low-frequency signal northward to southeast coast of China is, the longer (shorter) duration and stronger (weaker) intensity of pre-flood season persistent rainstorm may be.
  • Fig. 1  Station map of Fujian, Guangdong and Guangxi

    Fig. 2  IRS and duration of pre-flood season persistent rainstorm from 1961 to 2012

    Fig. 3  The power spectrum analysis about IRD of pre-flood season (dash line represents Markov red noise spectrum)

    Fig. 4  The average variance contribution of low-frequency signal in pre-flood season precipitation

    (a)10-20 days, (b)20-30 days, (c)30-60 days, (d)10-60 days

    Fig. 5  IRZ and 10-60-day low-frequency oscillation intensity of pre-flood season rainstorm from 1961 to 2012

    Fig. 6  Low-frequency oscillation intensity of pre-flood season rainstorm from 1961 to 2012 in various cycles

    Fig. 7  Correlations between PC1, PC2, PC3, PC4 and pre-flood season precipitation in China

    (effective degree of freedom:996;0.05 significanc level:0.07; 0.01 significanc level:0.09)

    Fig. 8  Difference between two decades (the years of 1979-1991 and 1992-2012) of appear days (a) and intensity (b) about the tropical low-frequency northward movement signal in phases (circle marks the point significant at 0.05 level)

    Table  1  Precipitation intensity of pre-flood season persistent rainstorm

    强度等级 p IRS
    明显偏弱 p < 10% IRS < 88
    偏弱 10%≤p<30% 88≤IRS<102
    正常 30%≤p<70% 102≤IRS<163
    偏强 70%≤p<90% 163≤IRS<237
    明显偏强 p≥90% IRS≥237
    DownLoad: Download CSV

    Table  2  The decadal variation of IRS of pre-flood season in different levels

    强度等级 1961-2012年 1961-1972年 1973-1991年 1992-2012年
    明显偏弱 4 1 1 2
    偏弱 8 3 3 2
    正常 18 6 6 6
    偏强 8 1 2 5
    明显偏强 5 1 0 4
    DownLoad: Download CSV

    Table  3  Correlations between oscillation intensity of low-frequency signal in cycles and IRZ of pre-flood season from 1961 to 2012

    低频周期/d 相关系数
    10~20 0.394
    20~30 0.322
    30~60 0.393
    60~90 0.198
    10~60 0.521
    DownLoad: Download CSV

    Table  4  Correlations between oscillation intensity of low-frequency signal in different section and cycle during pre-flood season

    相关周期/d 1961-1972年 1973-1991年 1992-2012年 1961-2012年
    10~20 d与20~30 d 0.18 -0.18 0.21 0.12
    10~20 d与30~60 d 0.64* -0.45* 0.06 0.18
    20~30 d与30~60 d 0.67* 0.17 0.21 0.40*
    注:*表示达到0.05显著性水平。
    DownLoad: Download CSV
  • [1]
    鹿世瑾.华南气候.北京:气象出版社, 1990.
    [2]
    Ding Y.Summer monsoon rainfalls in China.J Meteor Soc Japan, 1992, 70:373-396.
    [3]
    Ding Y, Chan J C L.The East Asian summer monsoon:an overview.Meteorology & Atmospheric Physics, 2005, 89(1-4):117-142.
    [4]
    伍红雨, 杜尧东, 秦鹏.华南暴雨的气候特征及变化.气象, 2011, 37(10):1262-1269. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201110011.htm
    [5]
    张婷, 魏凤英.华南地区汛期极端降水的概率分布特征.气象学报, 2009, 67(3):442-451. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200903012.htm
    [6]
    陆虹, 陈思蓉, 郭媛, 等.近50年华南地区极端强降水频次的时空变化特征.热带气象学报, 2012, 28(2):219-227. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201202010.htm
    [7]
    倪允琪, 周秀骥, 张人禾, 等.我国南方暴雨的试验与研究.应用气象学报, 2006, 17(6):690-704. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606118&flag=1
    [8]
    谢炯光, 纪忠萍, 谷德军, 等.广东省前汛期连续暴雨的气候背景及中期环流特征.应用气象学报, 2006, 17(3):354-362. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060361&flag=1
    [9]
    刘爱鸣, 潘宁, 邹燕, 等.福建前汛期区域暴雨客观预报模型研究.应用气象学报, 2003, 14(4):419-429. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030452&flag=1
    [10]
    何立富, 陈涛, 孔期.华南暖区暴雨研究进展.应用气象学报, 2016, 27(5):559-569. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160505&flag=1
    [11]
    吴丽姬, 温之平, 贺海晏, 等.华南前汛期区域持续性暴雨的分布特征及分型.中山大学学报(自然科学版), 2007, 46(6):108-113. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ200706027.htm
    [12]
    林爱兰, 李春晖, 郑彬, 等.广东前汛期持续性暴雨的变化特征及其环流形势.气象学报, 2013, 71(4):621-642. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201304004.htm
    [13]
    陈阳, 翟盘茂.中国持续性暴雨特征及中东部地区事件异常大尺度环流分析.北京:中国气象科学研究院, 2013.
    [14]
    Mao J, Chan J C L.Intraseasonal variability of the South China Sea summer monsoon.J Climate, 2005, 18(18):2388-2402.
    [15]
    Mao J, Sun Z, Wu G.20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea.Climate Dynamics, 2010, 34(5):747-761. doi:  10.1007/s00382-009-0628-2
    [16]
    Jing Y, Wang B, Wang B, et al.Biweekly and 21-30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River Basin.J Climate, 2010, 23(5):1146-1159. doi:  10.1175/2009JCLI3005.1
    [17]
    何金海, 赵平, 祝从文, 等.关于东亚副热带季风若干问题的讨论.气象学报, 2008, 66(5):683-696. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200805003.htm
    [18]
    朱志伟, 何金海.孟加拉湾低涡与南海季风爆发关系及其可能机理.热带气象学报, 2013, 29(6):915-923. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201306005.htm
    [19]
    Li T, Wang B.A review on the western North Pacific monsoon:Synoptic-to-interannual variabilities.Terrestrial Atmospheric & Oceanic Sciences, 2005, 16(2):285-314. https://www.researchgate.net/publication/283159407_A_review_on_the_western_North_Pacific_monsoon_Synoptic-to-interannual_variabilities
    [20]
    Wang B, Webster P J, Teng H.Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites.Geophys Res Lett, 2005, 32(4):353-368. https://www.researchgate.net/publication/228343046_Antecedents_and_self-induction_of_active-break_South_Asian_monsoon_unraveled_by_satellites
    [21]
    Kikuchi K, Wang B.Formation of tropical cyclones in the Northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes.J Meteor Soc Japan, 2010, 88(3):475-496. doi:  10.2151/jmsj.2010-313
    [22]
    Gao J, Lin H, You L, et al.Monitoring early-flood season intraseasonal oscillations and persistent heavy rainfall in South China.Climate Dynamics, 2016, DOI:10.1007/s00382-016-3045-3.
    [23]
    Lin H.Monitoring and Predicting the Intraseasonal Variability of the East Asian-Western North Pacific Summer Monsoon.Mon Wea Rev, 2013, 141(3):1124-1138. doi:  10.1175/MWR-D-12-00087.1
    [24]
    琚建华, 赵尔旭.东亚夏季风区的低频振荡对长江中下游旱涝的影响.热带气象学报, 2005, 21(2):163-171. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200502006.htm
    [25]
    高斯, 简茂球, 乔云亭.大气热源30~60天振荡与华南6月旱涝的关系.热带气象学报, 2010, 26(5):555-562. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201005006.htm
    [26]
    纪忠萍, 谷德军, 吴乃庚, 等.广东省前汛期暴雨与500 hPa关键区准双周振荡.应用气象学报, 2010, 21(6):671-684. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100604&flag=1
    [27]
    黄丽娜, 高建芸, 陈彩珠, 等.福建前汛期持续性强降水的大气低频特征分析.气象, 2014, 40(6):723-732. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201406009.htm
    [28]
    陈彩珠, 高建芸, 黄丽娜, 等.大气低频变化对福建前汛期典型持续性暴雨影响.应用气象学报, 2016, 27(1):75-84. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160108&flag=1
    [29]
    纪忠萍, 谷德军, 吴乃庚, 等.广东省前汛期暴雨与500 hPa关键区准双周振荡.应用气象学报, 2010, 21(6):671-684. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100604&flag=1
    [30]
    高建芸, 陈彩珠, 周信禹, 等.2010年福建前汛期典型持续性暴雨过程的低频特征分析.气象科技进展, 2013, 6(1):2095-1973. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201301012.htm
    [31]
    曹鑫, 任雪娟, 杨修群, 等.中国东南部5-8月持续性强降水和环流异常的准双周振荡.气象学报, 2012, 70(4):766-788. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201204015.htm
    [32]
    符淙斌, 王强.气候突变的定义和检测方法.大气科学, 1992, 16(4):482-493. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199204010.htm
    [33]
    周静亚, 杨大升, 黄嘉佑.夏季热带及副热带环流系统周期振荡与中国降水的功率谱分析.热带气象学报, 1986, 2(3):195-203. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX198603000.htm
    [34]
    Torrence C, Compo G P.A practical guide to wavelet analysis.Bull Amer Meteor Soc, 2010, 79(79):61-78. http://paos.colorado.edu/research/wavelets/bams_79_01_0061.pdf
    [35]
    姚菊香, 王盘兴, 李丽平.季节内振荡研究中两种数字滤波器的性能对比.大气科学学报, 2005, 28(2):248-253. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX20050200D.htm
    [36]
    袁慧敏, 王秀荣, 范广洲, 等.长江中下游沿江地区暴雨过程综合评估模型及应用.气象, 2012, 38(10):1189-1195. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201210006.htm
    [37]
    郑国, 薛建军, 范广洲, 等.淮河上游暴雨事件评估模型.应用气象学报, 2011, 22(6):753-759. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110614&flag=1
    [38]
    张学民, 杨修群, 孙成艺.华南前汛期开始日期和结束日期确定方法综述.气象, 2008, 34(11):11-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX200803004.htm
    [39]
    林昕, 高建芸, 张容焱, 等.基于定量化指标的福建前汛期降水强度特征分析.暴雨灾害, 2014, 33(3):297-303. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201403013.htm
    [40]
    Wheeler M C.An all-season real-time multivariate MJO index:Development of an index for monitoring and prediction.Mon Wea Rev, 2004, 132(8):1917-1932. doi:  10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(4)

    Article views (4117) PDF downloads(611) Cited by()
    • Received : 2016-04-21
    • Accepted : 2016-01-13
    • Published : 2017-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint