Chen Jinlei, Wen Jun, Liu Rong, et al. Variation characteristics of soil temperature & moisture and air parameters in the source region of the Yellow River. J Appl Meteor Sci, 2017, 28(1): 98-108. DOI:  10.11898/1001-7313.20170109.
Citation: Chen Jinlei, Wen Jun, Liu Rong, et al. Variation characteristics of soil temperature & moisture and air parameters in the source region of the Yellow River. J Appl Meteor Sci, 2017, 28(1): 98-108. DOI:  10.11898/1001-7313.20170109.

Variation Characteristics of Soil Temperature & Moisture and Air Parameters in the Source Region of the Yellow River

DOI: 10.11898/1001-7313.20170109
  • Received Date: 2016-08-17
  • Rev Recd Date: 2016-01-13
  • Publish Date: 2017-01-31
  • The source region of the Yellow River (SRYR) located in the northeast of the Tibetan Plateau, is the crucial water conservation area. Soil temperature & moisture variations and associated climate effects have important implications to the change of runoff. Three kinds of frequently used reanalysis datasets, ERA-Interim, CFSR, and JRA-55 are tested using field observations of Maqu Soil Temperature & Moisture Network so as to find the optimal one for SRYR. Combining with observations of Maqu Station, the climate changes in recent 35 years and the temporal variation of soil moisture & temperature are analyzed. In addition, their spatial variations are depicted by reanalysis datasets and CLM4.5(Community Land Model 4.5). Main results are as follows.CFSR is the best dataset to depict the soil moisture variation, and ERA-Interim is better on soil temperature, while JRA-55 is unsuited. Soil temperature has an indication to the climate change, but its response is less significant than air temperature. Soil moisture has an increasing trend, because freezing time becomes shorter and melting time is extending. Air temperature, soil temperature & moisture, except for precipitation, have abruptions in the last 35 years. Air temperature starts to abrupt during 1997-2000, after that it shows significant upward trend. Precipitation decreases from 1987 to 2004 and increases after 2005. Abrupt change of soil temperature takes place during 1985-1986, and beyond the belief line after 1994 with prominent rising. It means soil temperature is more sensitive than air temperature to climate warming. Soil moisture has an upward abruption in 2002. Soil temperature & moisture in 10 cm depth become warm and dry in recent years. Lakes and the Yellow River are the cold and wet centers in warm season, and turn warm and dry in cold season. CLM4.5 has high simulation accuracy, and is capable of describing detailed changes of soil in SRYR. All in all, it is better than reanalysis dataset in simulating the spatial variation of soil temperature & moisture, but still has a long way comparing with observations.
  • Fig. 1  The variation of soil temperature & moisture from Jul 2008 to Jun 2009 in the source region of the Yellow River (SRYR) (a) variation of soil moisture, (b) variation of soil temperature

    Fig. 2  The interannual variation and tendency of air temperature, precipitation, soil temperature & moisture during 1980-2014 in Maqu Station of SRYR (a) air temperature, (b) precipitation, (c) soil temperature, (d) soil moisture

    Fig. 3  M-K test and sliding T test curves of air temperature, precipitation, soil temperature & moisture in recent 35 years in SRYR (a) M-K test for air temperature, (b) M-K test for precipitation, (c) M-K test for soil temperature, (d) M-K test for soil moisture, (e) sliding T test for air temperature, (f) sliding T test for precipitation, (g) sliding T test for soil temperature, (h) sliding T test for soil moisture

    Fig. 4  Recent variation of soil moisture and soil temperature in cold season, warm season and monsoon season in SRYR (a) variation of soil moisture in cold season, (b) variation of soil moisture in warm season, (c) variation of soil moisture in monsoon season, (d) variation of soil temperature in cold season, (e) variation of soil temperature in warm season, (f) variation of soil temperature in monsoon season

    Fig. 5  The spatial distribution of soil temperature & moisture in warm season and cold season during 2006-2010 in SRYR (a) soil moisture of CFSR in warm season, (b) soil moisture of CLM4.5 simulation in warm season, (c) soil moisture of CFSR in cold season, (d) soil moisture of CLM4.5 simulation in cold season, (e) soil temperature of ERA-Interim in warm season, (f) soil temperature of CLM4.5 simulation in warm season, (g) soil temperature of ERA-Interim in cold season, (h) soil temperture of CLM4.5 simulation in cold season

    Table  1  Sites of Maqu Soil Temperature & Moisture Network

    站点 纬度 经度 海拔高度/m
    CST-01 33°53′N 102°08′E 3491
    CST-02 33°40′N 102°08′E 3449
    CST-03 33°54′N 101°58′E 3508
    CST-04 33°46′N 102°43′E 3505
    CST-05 33°40′N 101°53′E 3542
    NST-06 34°00′N 102°16′E 3428
    NST-07 33°59′N 102°21′E 3430
    NST-08 33°58′N 102°36′E 3473
    NST-09 33°54′N 102°33′E 3434
    NST-10 33°52′N 102°34′E 3512
    DownLoad: Download CSV
  • [1]
    秦大河.气候变化科学与人类可持续发展.地理科学进展, 2014, 33(7):874-883. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201407002.htm
    [2]
    王介民.陆面过程实验和地气相互作用研究-从HEIFE到IMGRASS和GAME-Tibet/TIPEX.高原气象, 1999, 18(3):280-294. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199903003.htm
    [3]
    马耀明, 姚檀栋, 王介民.青藏高原能量和水循环试验研究-GAME/Tibet与CAMP/Tibet研究进展.高原气象, 2006, 25(2):344-351. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200602022.htm
    [4]
    Wen J, Su Z, Ma Y.Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data.Journal of Geophysical Research:Atmospheres, 2003, 108(2):ACL 2-1-ACL 2-10. http://www.oalib.com/references/15987492
    [5]
    李巧萍, 丁一汇, 董文杰.土壤湿度异常对区域短期气候影响的数值模拟试验.应用气象学报, 2007, 18(1):1-11. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070102&flag=1
    [6]
    梁晓, 郑小谷, 戴永久, 等.EnKF中误差协方差优化方法及在资料同化中应用.应用气象学报, 2014, 25(4):397-405. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140402&flag=1
    [7]
    Yeh T, Wetherald R, Manabe S.The effect of soil moisture on the short-term climate and hydrology change-A numerical experiment.Mon Wea Rev, 1984, 112(3):474-490. doi:  10.1175/1520-0493(1984)112<0474:TEOSMO>2.0.CO;2
    [8]
    Koster R D, Suarez M J, Ducharne A, et al.A catchment-based approach to modeling land surface processes in a GCM:PartⅠ.Model structure.Journal of Geophysical Research:Atmospheres, 2000, 105(D20):24809-24822. doi:  10.1029/2000JD900327
    [9]
    左志燕, 张人禾.中国东部夏季降水与春季土壤湿度的联系.科学通报, 2007, 52(14):1722-1724. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200714024.htm
    [10]
    左志燕, 张人禾.中国东部春季土壤湿度的时空变化特征.中国科学(地球科学), 2008, 38(11):1428-1437. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200811011.htm
    [11]
    Zhang Y, Chen W, Smith S L, et al.Soil temperature in Canada during the Twentieth Century:Complex responses to atmospheric climate change.Journal of Geophysical Research:Atmospheres, 2005, 110(D3).
    [12]
    陆晓波, 徐海明, 孙丞虎, 等.中国近50 a地温的变化特征.南京气象学院学报, 2006, 29(5):706-712. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200605018.htm
    [13]
    程善俊, 管晓丹, 黄建平, 等.利用GLDAS资料分析黄土高原半干旱区土壤湿度对气候变化的响应.干旱气象, 2013, 31(4):641-649. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201304001.htm
    [14]
    汤懋苍, 张建, 王敬香, 等.我国季平均的0.8 m地温距平场与后一季降水场的相关分析.气象学报, 1988, 46(4):481-485. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB198804011.htm
    [15]
    刘树华, 崔艳, 刘和平.土壤热扩散系数的确定及其应用.应用气象学报, 1991, 2(4):337-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910447&flag=1
    [16]
    王会军, 薛峰, 毕训强.气候模式的年际变率和可预测性.应用气象学报, 1997, 8(增刊Ⅰ):218-223. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.026.htm
    [17]
    赵鸿, 张强, 杨启国, 等.黄土高原半干旱雨养区日光温室小气候分析.应用气象学报, 2007, 18(5):627-634. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070596&flag=1
    [18]
    徐祥德, 陈联寿.青藏高原大气科学试验研究进展.应用气象学报, 2006, 17(6):756-772. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606124&flag=1
    [19]
    吴国雄, 李伟平, 郭华, 等.青藏高原感热气泵和亚洲夏季风//赵九章纪念文集.北京:科学出版社, 1997:116-126.
    [20]
    蓝永超, 沈永平, 李州英, 等.气候变化对黄河河源区水资源系统的影响.干旱区资源与环境, 2006, 20(6):57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200606010.htm
    [21]
    Chen J, Wen J, Tian H.Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements.J Hydrol, 2016, 533:62-73. doi:  10.1016/j.jhydrol.2015.11.032
    [22]
    Sneyers R.On the statistical analysis of series of observations.Journal of Biological Chemistry, 1991, 258(22):13680-13684. https://www.researchgate.net/publication/309122890_On_the_statistical_analysis_of_series_of_observations
    [23]
    李建, 宇如聪, 陈昊明, 等.对三套再分析资料中国大陆地区夏季降水量的评估分析.气象, 2010, 36(12):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201012002.htm
    [24]
    Liu L, Zhang R, Zuo Z.Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China.Journal of Geophysical Research:Atmospheres, 2014, 119(1):54-64. doi:  10.1002/2013JD020940
    [25]
    史培军, 孙劭, 汪明, 等.中国气候变化区划(1961~2010年).中国科学(地球科学), 2014, 44(10):2294-2306. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201410017.htm
    [26]
    符淙斌, 王强.气候突变的定义和检测方法.大气科学, 1992, 16(4):482-493. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK199204010.htm
    [27]
    葛全胜, 郑景云, 郝志新, 等.过去2000年中国气候变化研究的新进展.地理学报, 2014, 69(9):1248-1258. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201409002.htm
    [28]
    魏凤英.现代气候统计诊断与预测技术.北京:气象出版社, 2007.
    [29]
    李万寿, 冯玲, 孙胜利.扎陵湖、鄂陵湖对黄河源头年径流的影响.地理学报, 2001, 56(1):75-82. http://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200101008.htm
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (3032) PDF downloads(456) Cited by()
    • Received : 2016-08-17
    • Accepted : 2016-01-13
    • Published : 2017-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint