Chen Lijuan, Gu Weizong, Bo Zhongkai, et al. The statistical downscaling method of summer rainfall prediction over the Huang-Huai Valley. J Appl Meteor Sci, 2017, 28(2): 129-141. DOI:  10.11898/1001-7313.20170201.
Citation: Chen Lijuan, Gu Weizong, Bo Zhongkai, et al. The statistical downscaling method of summer rainfall prediction over the Huang-Huai Valley. J Appl Meteor Sci, 2017, 28(2): 129-141. DOI:  10.11898/1001-7313.20170201.

The Statistical Downscaling Method of Summer Rainfall Prediction over the Huang-Huai Valley

DOI: 10.11898/1001-7313.20170201
  • Received Date: 2016-12-10
  • Rev Recd Date: 2017-02-13
  • Publish Date: 2017-03-31
  • The statistical downscaling method and predictability of summer rainfall anomaly over the Huang-Huai Valley (SRAHV) is studied based on station precipitation data, NCEP/NCAR reanalysis data and BCC_CSM1.1m hindcasts from 1991 to 2011.Firstly, correlation coefficients between SRAHV and seasonal circulations in troposphere are calculated. In the high troposphere, significant circulation patterns are the South Asia high, the westerly over Eurasia, 200 hPa zonal wind over the southern of South China Sea and the Philippines. In the middle level, significant predictors are blocking high over Ural and west Pacific subtropical high. In the low level, southern anomaly wind over South China is the key factor. These predictors show clearly positive relationship with SRAHV and may lead to more rainfall.Secondly, the performance of BCC_CSM1.1m is diagnosed on the basis of summer hindcast circulations. Skills of 200 hPa and 500 hPa potential heights, 200 hPa zonal wind, 850 hPa meridional wind by BCC_CSM1.1m are relatively high in some key regions which may affect the SRAHV in reasonable physical mechanism. Six key factors are selected based on the consistent anomaly ratio of factors between BCC_CSM1.1m and reanalysis data, as well as the ratio between SRAHV and predictors from reanalysis data. The optimal sub-tree regression (OSR) is used as transfer function in the statistical downscaling model. Six predictors are tested by one-year-out cross validation sample tests. The consistent ratio between observation of SRAHV and prediction is 61%. By deleting dependent factors, three independent predictors (200 hPa potential height over the Ural, 200 hPa potential height over the South Asia high region to South China, 200 hPa zonal wind over South China Sea to South Philippines) are used to make the statistical downscaling model again, and the accuracy is improved to 72%.Further studies show that the predictability of statistical downscaling model comes from the skill of three key predictors by BCC_CSM1.1m, representing the strength of blocking activity over the Ural, the strength and position of the South Asia high, and the strength of west anomaly wind over the west tropical Pacific. When model output show high skill on three factors, skills of downscaling model are also high and predictions of SRAHV are close to observations in the years of 1994, 1995, 1998, 2004 and 2010. In the years of 1991, 1996 and 1997, BCC_CSM1.1m performs poorly especially on west anomaly wind over the west tropical Pacific. The correlation coefficient of west anomaly wind over the west tropical Pacific and SRAHV is 0.55 which passing the test of 0.01 level, indicating BCC_CSM1.1m's important role in the statistical downscaling model, which determines the prediction skill of SRAHV.
  • Fig. 1  The correlation of summer rainfall anomaly over the Huang-Huai Valley to 200 hPa geopotential height in 1991-2011

    (shaded areas denote passing tests of 0.05, 0.01, 0.001 levels, respectively)

    Fig. 2  The same as in Fig. 1, but for 200 hPa zonal wind

    Fig. 3  The same as in Fig. 1, but for 500 hPa geopotential height

    Fig. 4  The same as in Fig. 1, but for 850 hPa zonal wind

    Fig. 5  The same as in Fig. 1, but for 850 hPa meridional wind

    Fig. 6  The observation and downscaling result from six factors of summer rainfall anomaly over the Huang-Huai Valley

    Fig. 7  The observation, downscaling result from three factors and model output of summer rainfall anomaly over the Huang-Huai Valley

    Fig. 8  200 hPa geopotential height anomaly (unit:gpm) and zonal wind anomaly (unit:m/s) in summer of 1996

    (a) geopotential height anomaly of reanalysis data, (b) geopotential height anomaly of BCC_CSM1.1m, (c) zonal wind anomaly of reanalysis data, (d) zonal wind anomaly of BCC_CSM1.1m

    Fig. 9  The normalized 200 hPa zonal wind over South China Sea to South Philippines (u200-4) and summer rainfall anomaly over the Huang-Huai Valley

    Table  1  The consistent anomaly ratio of factors between BCC_CSM1.1m and reanalysis data, as well as the ratio between summer rainfall anomaly over the Huang-Huai Valley and predictors from reanalysis data

    环流因子 模式与再分析资料环流因子符号一致率/% 与再分析资料环流因子物理意义一致率/%
    h200-1 62 67
    h200-2 72 67
    h200-3 67 57
    h500-1 48 62
    h500-2 38 81
    h500-3 67 57
    h500-4 67 72
    u200-1 67 72
    u200-2 38 38
    u200-3 57 52
    u200-4 67 76
    u850-1 52 67
    u850-2 48 33
    v850-1 62 81
    v850-2 52 57
    DownLoad: Download CSV

    Table  2  Correlation coefficients among circulation factors

    因子名称 h200-1 h200-2 h500-5 u200-1 u200-4 v850-1
    h200-1 1 0.31 -0.03 -0.35 -0.43 -0.53
    h200-2 1 0.59 -0.65 -0.17 -0.48
    h500-5 1 -0.04 -0.48 0.25
    u200-1 1 0.40 0.46
    u200-4 1 0.75
    v850-1 1
    DownLoad: Download CSV

    Table  3  Normalized predictors from BCC_CSM1.1m hindcast data and reanalysis data

    年份 h200-1 h200-2 u200-4
    模拟值 实况值 模拟值 实况值 模拟值 实况值
    1992 -0.98 -2.18 -3.10 -1.57 1.24 -0.16
    1996 -0.37 -0.13 -0.30 -0.41 -0.91 1.47
    1997 -0.02 -1.34 -0.74 -1.63 -0.13 -0.77
    1994 -1.22 -0.43 -0.24 -0.13 -0.74 -1.23
    1995 -0.85 -0.48 -0.89 -1.66 0.71 1.06
    1998 -0.91 2.17 0.24 1.94 2.94 2.24
    2004 -0.07 0.50 0.46 -0.71 -0.21 -1.73
    2010 -2.07 1.30 1.26 1.45 1.76 1.70
    DownLoad: Download CSV
  • [1]
    贾小龙, 陈丽娟, 高辉, 等.我国短期气候预测技术进展.应用气象学报, 2013, 24(6):641-655. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130601&flag=1
    [2]
    乐群, 曹俊武.中国月平均温度的气候噪声和潜在可预报性.气象学报, 1999, 57(5):605-612. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB199905009.htm
    [3]
    王会军, 陈丽娟, 李维京, 等.中国区域月平均温度和降水的模式可预报性分析.气象学报, 2007, 65(5):725-732. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB200705007.htm
    [4]
    李建平, 丁瑞强.短期气候可预报期限的时空分布.大气科学, 2008, 32(4):975-986. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200804021.htm
    [5]
    李维京, 刘景鹏, 陈丽娟, 等.中国月平均气温可预报性的时空特征及其年代际变化.科学通报, 2014, 59(12):2520-2527. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201425010.htm
    [6]
    刘景鹏, 陈丽娟, 李维京, 等.月尺度气温可预报性对资料长度的依赖及可信度.应用气象学报, 2015, 26(2):151-159. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150203&flag=1
    [7]
    Liu Jingpeng, Li Weijing, Chen Lijuan, et al.Estimation of the monthly precipitation predictability limit in China using the nonlinear local Lyapunov exponent. J Meteor Res, 2016, 30(1):93-102, doi: 10.1007/s13351-015-5049-z.
    [8]
    陈桂英, 赵振国.短期气候预测评估方法和业务初评.应用气象学报, 1998, 9(2):178-185. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980225&flag=1
    [9]
    陈丽娟, 袁媛, 杨明珠, 等.海温异常对东亚夏季风影响机理研究进展.应用气象学报, 2013, 24(5):521-532. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130502&flag=1
    [10]
    Huang Ronghui, Wu Yitang.The influence of ENSO on the summer climate change in China and its mechanisms. Adv Atmos Sci, 1989, 6:21-32. doi:  10.1007/BF02656915
    [11]
    Zhang R H, Sumi A, Kimoto M.A diagnostic study of the impact of El Nio on the precipitation in China. Adv Atmos Sci, 1999, 16:229-241. doi:  10.1007/BF02973084
    [12]
    张人禾.El Nino盛期印度夏季风水汽输送在我国华北地区夏季降水异常中的作用.高原气象, 1999, 18(4):567-574. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199904010.htm
    [13]
    陈文, El Niño和La Niña事件对东亚冬、夏季风循环的影响.大气科学, 2002, 26(5):595-610. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200205001.htm
    [14]
    陆日宇.华北汛期降水量年际变化与赤道东太平洋海温.科学通报, 2005, 50(11):1131-1135. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200511012.htm
    [15]
    陈兴芳, 宋文玲.欧亚和青藏高原冬春季积雪与我国夏季降水关系的分析和预测应用.高原气象, 2000, 19(2):214-223. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200002010.htm
    [16]
    Wu B Y, Yang K, Zhang R H.Eurasian snow cover variability and its association with summer rainfall in China. Adv Atmos Sci, 2009, 26(1):31-44. doi:  10.1007/s00376-009-0031-2
    [17]
    Wu T W, Qian Z A.The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall:An observation investigation. J Climate, 2003, 16(12):2038-2051. doi:  10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
    [18]
    张若楠, 张人禾, 左志燕.中国冬季多种积雪参数的时空特征及差异性.气候与环境研究, 2014, 19(5):572-586. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH201405005.htm
    [19]
    左志燕, 张人禾.中国东部夏季降水与春土壤湿度的联系.科学通报, 2007, 52(14):1722-1724. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200714024.htm
    [20]
    Wigley T M L, Jones P D, Briffa K R, et al.Obtaining subgrid scale information from coarse resolution general circulation model output. J Geophys Res, 1990, 95(D2):1943-1953. doi:  10.1029/JD095iD02p01943
    [21]
    Hewitson B C, Crane R G.Climate downscaling:Techniques and applications. Climate Res, 1996, 7:85-95. doi:  10.3354/cr007085
    [22]
    Palutikof J P, Winkler J A, Goodess C M, et al.The simulation of daily temperature time series from GCM output.Part Ⅰ:Comparison of model data with observations. J Climate, 1997, 17(10):2497-2513. https://www.researchgate.net/publication/253276734_The_Simulation_of_Daily_Temperature_Time_Series_from_GCM_Output_Part_I_Comparison_of_Model_Data_with_Observations
    [23]
    Kilsby C G, Cowpertwait P S P, O'Connell P E, et al.Predicting rainfall statistics in England and Wales using atmospheric circulation variables. Int J Climatol, 1998, 18:523-539. doi:  10.1002/(ISSN)1097-0088
    [24]
    Murphy J.Prediction of climate change over Europe using statistical and dynamical downscaling techniques. Int J Climatol, 2000, 20(5):489-501. doi:  10.1002/(ISSN)1097-0088
    [25]
    Willem A L, Warren J T.Statistical downscaling of monthly forecast. Int J Climatol, 2000, 20:1521-1532. doi:  10.1002/(ISSN)1097-0088
    [26]
    Hellstrm C, Chen D L, Christine A, et al. Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Climate Res, 2001, 19:45-55. doi:  10.3354/cr019045
    [27]
    Bergant K, Kajfez B J, Crepinsek Z.Statistical downscaling of general circulation model simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia. International Journal of Biology, 2001, 46:22-32. https://www.researchgate.net/publication/225588484_Statistical_downscaling_of_general-circulation-model-_simulated_average_monthly_air_temperature_to_the_beginning_of_flowering_of_the_dandelion_Taraxacum_officinale_in_Slovenia
    [28]
    Benestad R E.Empirical-statistical downscaling in climate modeling. EOS Trans Am Geophys Union, 2004, 85(42):417-422. https://www.researchgate.net/publication/252882059_Empirical-Statistical_Downscaling_in_Climate_Modeling
    [29]
    Paul S, Liu C M, Chen J M, et al.Development of a statistical downscaling model for projecting monthly rainfall over East Asia from a general circulation model output. J Geophys Res, 2008, 113, D15117. doi:  10.1029/2007JD009472
    [30]
    江双五, 田红, 陈丽娟.动力延伸预报产品释用方法的改进试验.应用气象学报, 2005, 16(6):779-786. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200506101&flag=1
    [31]
    范丽军, 符淙斌, 陈德亮.统计降尺度法对华北地区未来区域气温变化情景的预估.大气科学, 2007, 31(5):887-897. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705011.htm
    [32]
    贾小龙, 陈丽娟, 李维京, 等. BP-CCA方法用于中国冬季温度和降水的可预报性研究和降尺度季节预测.气象学报, 2010, 68(3):398-410. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201003013.htm
    [33]
    魏凤英, 黄嘉佑.大气环流降尺度因子在中国东部夏季降水预测中的作用.大气科学, 2010, 34(1):202-212. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201001019.htm
    [34]
    魏凤英, 黄嘉佑.我国东部夏季降水量统计降尺度的可预测性研究.热带气象学报, 2010, 26(4):483-488. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201004013.htm
    [35]
    覃志年, 陈丽娟, 唐红玉, 等.月尺度动力模式产品解释应用系统及预测技巧.应用气象学报, 2010, 21(5):614-620. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100511&flag=1
    [36]
    Gu Weizong, Chen Lijuan, Li Weijing, et al.Prediction of regional summer precipitation in China based on optimal information extracted from coupled general climate model. Acta Meteor Sinica, 2011, 25(3):303-315, doi: 10.1007/s13351-011-0306-2.
    [37]
    Ke Zongjian, Zhang Peiqun, Chen Lijuan, et al.An experiment of a statistical downscaling forecast model for summer precipitation over China. Atmos Oceanic Sci Lett, 2011, 4(5):270-275. doi:  10.1080/16742834.2011.11446941
    [38]
    Kang Hongwen, Zhu Congwen, Zuo Zhiyan, et al.Statistical downscaling of pattern projection using multi-model output variables as predictors. Acta Meteor Sinica, 2012, 70(2):192-201. https://www.researchgate.net/publication/227304538_Statistical_Downscaling_of_Pattern_Projection_Using_Multi-Model_Output_Variables_as_Predictors
    [39]
    Chen Huopo, Sun Jianqi, Wang Huijun.A statistical downscaling model for forecasting summer rainfall in China from DEMETER hindcast datasets. Wea Forecasting, 2012, 27:608-627. doi:  10.1175/WAF-D-11-00079.1
    [40]
    Sun Jianqi, Chen Huopo.A statistical downscaling scheme to improve global precipitation forecasting. Meteorol Atmos Phys, 2012, 117:87-102. doi:  10.1007/s00703-012-0195-7
    [41]
    Liu Ying, Ke Fan.A new statistical downscaling model for autumn precipitation in China. Int J Climatol, 2013, 33:1321-1336. doi:  10.1002/joc.v33.6
    [42]
    Liu Na, Li Shuanglin.Predicting summer rainfall over the Yangtze-Huai region based on time-scale decomposition statistical downscaling. Wea Forecasting, 2013, 29:162-176. https://www.researchgate.net/publication/277682621_Predicting_Summer_Rainfall_over_the_Yangtze-Huai_Region_Based_on_Time-Scale_Decomposition_Statistical_Downscaling
    [43]
    刘颖, 范可, 张颖.基于CFS模式的中国站点夏季降水统计降尺度预测.大气科学, 2013, 37(6):1287-1296, doi: 10.3878/j.issn.1006-9895.2012.12143.
    [44]
    吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20130503&flag=1
    [45]
    周鑫, 李清泉, 孙秀博, 等.BCC_CSM1.1模式对我国气温的模拟和预估.应用气象学报, 2014, 25(1):95-106. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20140110&flag=1
    [46]
    吴统文, 宋连春, 李伟平, 等.北京气候中心气候系统模式研发进展——在气候变化研究中的应用.气象学报, 2014, 72(1):12-29. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB201401002.htm
    [47]
    Kalnay E, Kanamitsu M, Kistler R, et al.The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc, 1996, 77(2):437-471. http://www.citeulike.org/user/harish/article/1746016
    [48]
    Chen Lijuan, Chen Deliang, Wang Huijun, et al.Regionalization of precipitation regimes in China. Atmos Oceanic Sci Lett, 2009, 2(5):301-307. doi:  10.1080/16742834.2009.11446818
    [49]
    林学椿, 张素琴.1998年中国特大洪涝时期的环流特征.地球物理学报, 2000, 43(5):607-615. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200005003.htm
    [50]
    魏凤英.现代气候统计诊断与预测技术 (第二版).北京:气象出版社, 2007.
    [51]
    吴洪宝, 吴蕾.气候变率诊断和预测方法.北京:气象出版社, 2005.
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(3)

    Article views (3886) PDF downloads(569) Cited by()
    • Received : 2016-12-10
    • Accepted : 2017-02-13
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint