Zhang Lin, Liu Yongzhu. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. DOI:  10.11898/1001-7313.20170204.
Citation: Zhang Lin, Liu Yongzhu. The preconditioning of minimization algorithm in GRAPES global four-dimensional variational data assimilation system. J Appl Meteor Sci, 2017, 28(2): 168-176. DOI:  10.11898/1001-7313.20170204.

The Preconditioning of Minimization Algorithm in GRAPES Global Four-dimensional Variational Data Assimilation System

DOI: 10.11898/1001-7313.20170204
  • Received Date: 2016-09-07
  • Rev Recd Date: 2017-01-12
  • Publish Date: 2017-03-31
  • Variational data assimilation is a minimization problem of the cost function. Main characteristics of the problem are that the cost function is quadratic or nearly-quadratic and Hessian matrix of the cost function is sparse, symmetric and positive-definite. Iterative methods are suitable for solving this problem, but the calculation of the cost function and its gradient is very expensive, especially in four-dimensional variational data assimilation (4DVar). To find an optimal solution and achieve acceptable convergence rate, it is necessary to precondition the minimization algorithm.GRAPES global 4DVar system is developed for the operational use in China Meteorological Administration (CMA). It solves the minimization using L-BFGS algorithm, which is well known as a practical algorithm for variational data assimilation and originated from the works of Nocedal and Liu et al. It uses the information from the previous m iterations to compute the BFGS matrix which is an approximation to the inverse of Hessian matrix. GRAPES global 4DVar system adopts the incremental approach. In the incremental 4DVar, the inner loop minimization is solved several times with multi-outer-loop updates to find a more accurate solution of the nonlinear problem. It's possible to use information from previous minimization to precondition the next minimization. It is also related to the so-called warm-start of L-BFGS.Preconditioned L-BFGS is introduced and impacts of the preconditioning of L-BFGS on the convergence rate in 4DVar experiments of real observations are evaluated. Firstly, a case study is performed with four inner loop minimizations and 50 iterations during each inner loop minimization. Since the preconditioning works from the second inner loop minimization, nonlinear observation terms in the cost function are compared during 50-200 iterations. Results show the preconditioning of L-BFGS is effective, especially during the second inner loop minimization which uses the information from the first inner loop minimization. The scheme which uses information from the previous day to precondition the 4DVar minimization at the next day is also investigated. Given the small change of Hessian matrix between 6 and 24 hours, it may also be positive to precondition the 4DVar minimization using information from the previous day.Analysis-forecast cycling experiments are also carried out in May 2013. The performance of the preconditioned L-BFGS is consistent, leading to quicker convergence of 4DVar minimization. It is encouraging that the 4DVar run-time is reduced significantly, which is vital to the operational use of GRAPES global 4DVar system in the future.
  • Fig. 1  Values of cost function from a case study

    Fig. 2  Values of nonlinear observation term from a case study

    Fig. 3  Values of cost function in the 4DVar analysis using the information at 0300 UTC 1 May 2013 to precondition the minimization

    Fig. 4  Normalized values of nonlinear observation term after the minimization from one-month cycling experiments in May 2013

    Fig. 5  Averaged normalized values of nonlinear observation term from one-month cycling experiments in May 2013

  • [1]
    Shewchuk J R.An Introduction to the Conjugate Gradient Method without the Agonizing Pain.Edition 1.http://www.cs.cmu.edu/~jrs/.
    [2]
    Fisher M.Minimization Algorithms for Variational Data Assimilation//Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling.ECMWF, 1998:364-385.
    [3]
    Lorenc A C.Optimal nonlinear objective analysis. Q J R Meteorol Soc, 1988, 114:205-240. doi:  10.1002/qj.v114:479
    [4]
    Courtier P, Andersson E, Heckly W, et al.The ECMWF implementation of three dimensional variational assimilation (3D-Var).PartⅠ:Formulation. Q J R Meteorol Soc, 1998, 124:1783-1808. doi:  10.1002/qj.49712455002/full
    [5]
    Gauthier P, Charette C, Fillion L, et al.Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre.PartⅠ:The global analysis. Atmosphere-Ocean, 1999, 37:103-156. doi:  10.1080/07055900.1999.9649623
    [6]
    Honda Y, Nishijima M, Koizumi K, et al.A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency:Formulation and preliminary results. Q J R Meteorol Soc, 2005, 131:3465-3475. doi:  10.1256/qj.05.132
    [7]
    Lorec A C, Ballard S P, Bell R S, et al.The Met Office global three-dimensional variational data assimilation scheme. Q J R Meteorol Soc, 2000, 126:2991-3012. doi:  10.1002/(ISSN)1477-870X
    [8]
    Parrish D F, Derber J C.The National Meteorological Center's spectral statistical-interpolation analysis system. Mon Wea Rev, 1992, 120:1747-1763. doi:  10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
    [9]
    Barker D M, Huang W, Guo Y R, et al.A three-dimensional variational data assimilation system for MM5:Implementation and initial results. Mon Wea Rev, 2004, 132:897-914. doi:  10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2
    [10]
    薛纪善, 陈德辉, 等.数值预报系统GRAPES的科学设计与应用.北京:科学出版社, 2008:374.
    [11]
    Courtier P, Thepaut J N, Hollingsworth A.A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc, 1994, 120:1367-1388. doi:  10.1002/(ISSN)1477-870X
    [12]
    Zupanski M.A preconditioning algorithm for four-dimensional variational data assimilation. Mon Wea Rev, 1996, 124:2562-2573. doi:  10.1175/1520-0493(1996)124<2562:APAFFD>2.0.CO;2
    [13]
    Zupanski M.A preconditioning algorithm for large scale minimization problems. Tellus, 1993, 45A:578-592. https://www.researchgate.net/publication/229725469_A_preconditioning_algorithm_for_large-scale_minimization_problems
    [14]
    Fisher M, Courtier P.Estimating the Covariance Matrices of Analysis and Forecast Error in Variational Data Assimilation.Tech Memo 220, ECMWF, 1995.
    [15]
    Morales J, Nocedal J.Automatic preconditioning by limited memory quasi-Newton updating. SIAM J Optimiz, 2000, 10(4):1079-1096. doi:  10.1137/S1052623497327854
    [16]
    Tshimanga J, Gratton S, Weaver A T, et al.Limited-memory preconditioners, with application to incremental four-dimensional variational data assimilation. Q J R Meteorol Soc, 2008, 134:751-769. doi:  10.1002/(ISSN)1477-870X
    [17]
    黄丽萍, 伍湘君, 金之雁.GRAPES模式标准初始化方案设计与实现.应用气象学报, 2005, 16(3):374-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050346&flag=1
    [18]
    薛纪善.新世纪初我国数值天气预报的科技创新研究.应用气象学报, 2006, 17(5):602-610. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200605103&flag=1
    [19]
    陈德辉, 沈学顺.新一代数值预报系统GRAPES研究进展.应用气象学报, 2006, 17(6):773-777. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606125&flag=1
    [20]
    刘艳, 薛纪善, 张林, 等.GRAPES全球三维变分同化系统的检验与诊断.应用气象学报, 2016, 27(1):1-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160101&flag=1
    [21]
    沈学顺, 苏勇, 胡江林, 等.GRAPES_GFS全球中期预报系统的研发和业务化.应用气象学报, 2017, 28(1):1-10. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170101&flag=1
    [22]
    王金成, 陆慧娟, 韩威, 等.GRAPES全球三维变分同化业务系统性能.应用气象学报, 2017, 28(1):11-24. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170102&flag=1
    [23]
    黄丽萍, 陈德辉, 邓莲堂, 等.GRAPES_Meso V4.0主要技术改进和预报效果检验.应用气象学报, 2017, 28(1):25-37. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170103&flag=1
    [24]
    刘永柱, 张林, 金之雁.GRAPES全球切线性和伴随模式的调优.应用气象学报, 2017, 28(1):62-71. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20170106&flag=1
    [25]
    Huang Xiangyu, Xiao Qingnong, Barker D M, et al.Four-dimensional variational data assimilation for WRF:Formulation and preliminary results. Mon Wea Rev, 2009, 137:299-314. doi:  10.1175/2008MWR2577.1
    [26]
    Yannick T.Incremental 4DVar Convergence Study.Tech Memo 469, ECMWF, 2005.
    [27]
    Dennis J E, More J J.Quasi-Newton methods, motivation and theory. SIAM Rev, 1977, 19:46-89. doi:  10.1137/1019005
    [28]
    Nocedal J.Updating quasi-Newton matrices with limited storage. Math of Computation, 1980, 35:773-782. doi:  10.1090/S0025-5718-1980-0572855-7
    [29]
    Liu D C, Nocedal J.On the limited memory BFGS method for large scale optimization. Mathematical Programming, 1989, 45:503-528. doi:  10.1007/BF01589116
  • 加载中
  • -->

Catalog

    Figures(5)

    Article views (3929) PDF downloads(630) Cited by()
    • Received : 2016-09-07
    • Accepted : 2017-01-12
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint