Wu Xiao, Bai Wenguang. Development of nonlinear regression model to estimate OLR based on FY-3/IRAS. J Appl Meteor Sci, 2017, 28(2): 189-199. DOI:  10.11898/1001-7313.20170206.
Citation: Wu Xiao, Bai Wenguang. Development of nonlinear regression model to estimate OLR based on FY-3/IRAS. J Appl Meteor Sci, 2017, 28(2): 189-199. DOI:  10.11898/1001-7313.20170206.

Development of Nonlinear Regression Model to Estimate OLR Based on FY-3/IRAS

DOI: 10.11898/1001-7313.20170206
  • Received Date: 2016-10-29
  • Rev Recd Date: 2017-01-18
  • Publish Date: 2017-03-31
  • OLR (outgoing longwave radiation) is the radiative energy flux the Earth and atmosphere emit out into the outspace, which is one of three components of the Earth and atmosphere radiative budget system, reflecting the climate and weather characteristics. Since the invention of meteorological satellites, OLR products have been processed for more than 40 years. Numerous methods have been developed to estimate OLR from satellite observations, including the relationship between the window channel brightness temperature of AVHRR and the flux equivalent brightness temperature proposed by Arnald Gruber in 1977 and George Ohring in 1984, regression models relating OLR with narrow band fluxes of window channel and water vapour channel of geostationary meteorological satellites developed by Liu in 1988, the linear and none-linear models relating OLR with satellite multi-channel radiances developed by Enllingson in 1994 and Lee in 2010. At the same time, broadband instruments such as ERBE and CERES on board of NOAA, Nimbus, Terra, Aqua are designed to directly observe OLR from outspace. Due to the high quality, CERES OLR products become the best available data to validate other retrieved OLR products.The IRAS (infrared atmospheric sounder) on board of FY-3 polar meteorological satellites carry 26 channels, among which 20 channels are used to observe radiances at the top of the Earth atmosphere at the wavenumber between 669 cm-1 and 2666 cm-1.These narrow band radiances have high relations with the full wavenumber radiative flux (OLR) the Earth and atmosphere emit. Therefore, a formula is derived for calculating OLR with multi-channel radiances of IRAS through infrared radiative transfer simulation. Based on radiances at top of atmosphere simulated with LBLRTM (line by line radiative transfer model) software for 2521 atmospheric profiles and statistical regression, a nonlinear model which relates OLR with multi-channel radiances of FY-3/IRAS are developed. By applying the model into FY-3/IRAS L1 data, the global daily mean OLR and monthly mean OLR data in April 2016 are produced. Comparing the IRAS OLR data with the Aqua/CERES and Terra/CERES OLR products, the root mean square error is 7.5 W·m-2, the correlation coefficient is 0.98, the mean bias is-0.2 W·m-2 when comparing the IRAS daily mean OLR with that of CERES. The root mean square error is 2.22 W·m-2, the correlation coefficient is 0.9982, and the mean bias is-0.2 W·m-2 when comparing the IRAS monthly mean OLR with that of CERES. The accuracy indicates that both the calibration quality of FY-3/IRAS instruments and the OLR retrieval model all achieve at a high level. In addition, OLR retrieval models used by various satellites since 1970 are also reviewed in brief.
  • Fig. 1  Simulated radiances at top of atmosphere for a clear-sky atmospheric profile with surface temperature 285.74 K and surface pressure 1016 hPa

    Fig. 2  Simulated radiances at top of atmosphere for a overcast atmospheric profile with cloud top temperature 220.43 K and cloud top pressure 201 hPa

    Fig. 3  Residuals of OLR predicated from the nonlinear model minus that simulated OLR plotted against TBB from channel 9 of IRAS

    Fig. 4  Daytime OLR estimated from FY-3C/IRAS observation on 30 Apr 2016

    Fig. 5  Distribution of daily mean OLR from FY-3B/IRAS and FY-3C/IRAS on 15 Apr 2016(unit:W·m-2)

    Fig. 6  Distribution of daily mean OLR from Aqua/CERES and Terra/CERES on 15 Apr 2016(unit:W·m-2)

    Fig. 7  Distribution of monthly mean OLR from FY-3B/IRAS and FY-3C/IRAS in Apr 2016(unit:W·m-2)

    Fig. 8  Distribution of monthly mean OLR from Aqua/CERES and Terra/CERES in Apr 2016(unit:W·m-2)

    Fig. 9  Monthly mean OLR of IRAS minus that of CERES in Apr 2016(unit:W·m-2)

    Fig. 10  Comparision between monthly mean OLR of IRAS and that of CERES in Apr 2016

    Table  1  The precision of OLR retrieval models

    卫星 仪器 模式 均方根误差/(W·m-2)
    NOAA SR, AVHRR TF=a+b×TB5+c×TB52 5.6
    FY-3 VIRR TF=a+b×TB5+c×TB52 5.65
    METEOSAT SEVIRI 3.0
    FY-2 VISSR 3.65
    NOAA HIRS 2.0
    GOES-R ABI 4.0
    FY-4 IMAGER 2.51
     注:均方根误差是指在模式建立过程的回归分析中,用已建立的模式计算每条廓线的OLR,再与廓线自身的OLR进行比较,以均方根误差统计的模式回归误差。
    DownLoad: Download CSV

    Table  2  Spectrums of FY-3C IRAS

    通道 中心波数/cm-1 主要探测目的
    1 669.9 大气温度的垂直分布 (30 hPa温度)
    2 680.4 60 hPa温度
    3 691.3 100 hPa温度
    4 703.4 400 hPa温度
    5 715.5 600 hPa温度
    6 732.7 800 hPa温度
    7 749.4 900 hPa温度
    8 801.6 表面温度
    9 898.6 表面温度
    10 1032.0 O3总含量
    11 1343.8 水汽的垂直分布 (900 hPa水汽)
    12 1364.2 700 hPa水汽
    13 1528.2 500 hPa水汽
    14 2190.8 大气温度的垂直分布 (100 hPa温度)
    15 2209.5 950 hPa温度
    16 2236.1 700 hPa温度
    17 2242.2 700 hPa温度
    18 2387.4 5 hPa温度
    19 2517.1 表面温度
    20 2668.2 表面温度
    21 14421.8 表面反射率
    22 11261.3 表面反射率
    23 10567.3 表面反射率
    24 10604.2 表面反射率
    25 8109.2 表面反射率
    26 6054.3 表面反射率
    DownLoad: Download CSV
  • [1]
    Schwalb A.The TIROS-N/NOAA A-C Satellites Series.NOAA Technical Memorandum NESS 95, 1978.
    [2]
    Wark D Q, Yamamoto G, Lienesch J H.Methods of estimating infared flux and surface temperature from meteorological satellites. J Atmos Sci, 1962, 19:369-384. doi:  10.1175/1520-0469(1962)019<0369:MOEIFA>2.0.CO;2
    [3]
    周嗣松.利用TIROS-N的AVHRR资料计算局部地区的辐射收支.气象科技, 1984, 7(3):82-86. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ198403014.htm
    [4]
    Gruber G, Ruff I, Eamest C.Determination of the Planetary Radiation Budget from TIROS-N Satellites.NOAA Technical Report NESDIS 3, 1983.
    [5]
    Gruber A.Determination of the Earth-atmosphere Radiation Budget from NOAA Satellite Data.NOAA Technical Report NESS 76, 1977.
    [6]
    Jacobowitz H, Tiche R J.The Earth radiation budget derived from the Nimbus-7 ERB experiment. J Geophys Res, 1984, 89(D4):4997-5010. doi:  10.1029/JD089iD04p04997
    [7]
    Jacobowitz H, Simuth W L, Howell H B.The first 18 months of pl-anetary radiation budget measurements from the NIMUS-6 ERB experiment. J Atmos Sci, 1979, 36:501-507. doi:  10.1175/1520-0469(1979)036<0501:TFMOPR>2.0.CO;2
    [8]
    Young D F, Wong Takmeng, Wielicki B A, et al.Time Interpolation and Synoptic Flux Computation for Single and Multiple Satellites.CERES Algorithm Theoretical Basis Documents, 1997.
    [9]
    Green R N, Wielicki B A, Coakley Ⅲ J A, et al.CERES Inversion to Instantaneous TOA Flux.CERES Algorithm Theoretical Basis Documents, 1997.
    [10]
    Schemets J, Liu Q H.Diunal Vriation of Outgoing Longwave Radiation for July 1982 from METEOSAT.European Space Operaton Center, MEP, 1988.
    [11]
    吴晓.用FY-2C静止气象卫星资料计算射出长波辐射通量密度.气象科技, 2007, 35(4):474-479. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200704005.htm
    [12]
    王钟睿, 钱永莆.印度洋、南海和东南沿海海温异常影响江淮流域6-7月降水量的分析及数值预报.应用气象学报, 2005, 16(4):527-538. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050467&flag=1
    [13]
    罗秋红, 李天然, 何夏江.OLR与南海热带气旋发展的关系.应用气象学报, 2004, 15(1):81-87. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040111&flag=1
    [14]
    江吉喜, 陈美珍, 方宗义.气象卫星资料在长江上游地区强暴雨3-5天预报中的应用.应用气象学报, 1991, 2(3):301-307. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19910340&flag=1
    [15]
    庄世宁, 赵声蓉, 姚明明.1998年夏季西太平洋副热带高压的变异分析.应用气象学报, 2005, 16(2):181-192. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050223&flag=1
    [16]
    杨喜峰, 蒋尚城.青藏高原OLR场的季节变化特征.应用气象学报, 1995, 6(4):414-421. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19950464&flag=1
    [17]
    蒋尚城.卫星观测的OLR气候图及其分析.气象科学研究院院刊, 1988, 3(1):93-99. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198801012.htm
    [18]
    孙力, 安刚.东北地区旱涝的OLR特征分析.应用气象学报, 2000, 11(2):228-235. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000233&flag=1
    [19]
    Abel P G, Gruber A.An Improved Model for the Calculation pf Longwave Flux at 11 μm.NOAA Technical Memorandum NESS 106, 1979.
    [20]
    George O, Gruber A.Satellite determination of the relationship between total longwave radiation flux and infrared window radiance. J Climate Appl Meteor, 1984, 23:416-425. doi:  10.1175/1520-0450(1984)023<0416:SDOTRB>2.0.CO;2
    [21]
    吴晓.从FY-3B极轨气象卫星VIRR仪器通道5遥测数据计算射出长波辐射.科学通报, 2011, 56(31):2604-2608. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201131010.htm
    [22]
    Cube M.Radiation budget parameters at the top of the Earth's atmosphere derived from METEOSAT data. J Applied Meteor, 1982, 21:1907-1921. doi:  10.1175/1520-0450(1982)021<1907:RBPATT>2.0.CO;2
    [23]
    Ellingson R G, Lee H T, Yanuk D J, et al.A technique for estimating outgoing longwave radiation from HIRS radiation observations. J Atmos Ocean Technol, 1989, 6:706-711. doi:  10.1175/1520-0426(1989)006<0706:ATFEOL>2.0.CO;2
    [24]
    Lee H T, Laszlo I, Gruber A, et al.ABI Earth Radiation Budget Upward Longwave Radiation:TOA.NOAA NESDIS Algorithm Theoretical Basis Documents, 2010.
    [25]
    Clough S A, Shephard M W, Mlawer E J.Atmospheric radiative transfer modeling:A summary of the AER codes. J Quant Spectrosc Radiat Transfer, 2005, 91:233-244. doi:  10.1016/j.jqsrt.2004.05.058
    [26]
    吴晓.地球大气透过率及辐射率计算.应用气象学报, 1998, 9(1):124-128. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980118&flag=1
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(2)

    Article views (2635) PDF downloads(437) Cited by()
    • Received : 2016-10-29
    • Accepted : 2017-01-18
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint