Ruan Zheng, Li Tao, Jin Long, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. DOI:  10.11898/1001-7313.20170207.
Citation: Ruan Zheng, Li Tao, Jin Long, et al. Influence of vertical air motion on the radar quantitative precipitation estimation. J Appl Meteor Sci, 2017, 28(2): 200-208. DOI:  10.11898/1001-7313.20170207.

Influence of Vertical Air Motion on the Radar Quantitative Precipitation Estimation

DOI: 10.11898/1001-7313.20170207
  • Received Date: 2016-10-08
  • Rev Recd Date: 2017-01-10
  • Publish Date: 2017-03-31
  • The radar quantitative precipitation estimation (QPE) is one of the main purpose of weather radar application. QPE products are applied very well due to wide space coverage, good precision and high spatial and temporal resolution of precipitation information. Main influencing factors cause differences between the QPE from radar and ground observation include the accuracy of the radar reflectivity, inconsistent of spatial and temporal between the radar and surface observation, and complex precipitation particle raindrop spectrum distribution. Air vertical motion effect in precipitation system and its temporal variation of random fluctuation is another important factor. Raindrop spectral distribution is considered with the development of radar QPE in recent years, and its falling speed can be achieved at the same time from PARSIVEL disdrometer. The air vertical motion acquired from data of PARSIVEL can be used to analyze its influence to the radar QPE. Using PARSIVEL data from the Southern China Monsoon Rainfall Experiment (SCMREX) during May and June 2014 at Yangjiang, Guangdong Province, several precipitation processes are analyzed, including 5 stratiform cloud (SC) precipitation events and 6 convective cloud (CC) precipitation events. The vertical air motion is retrieved and their influences on the QPE precision for both SC and CC are analyzed.The vertical air motion influencing value for 5 SC events are between-0.18 mm·h-1 and-1.05 mm·h-1, ranging from 13.61% to 13.99%. The vertical air motion influencing value for the six CC events are between 5.44 mm·h-1 and 24.81 mm·h-1, ranging from-38.59% to 25.92%. The influence on CC is greater than that on SC. PARSIVEL observation is applied to estimate the A and b coefficient in Z-R relation. The average deviation estimates SC under stationary atmospheric condition is 10.9% and 9.2% under non-stationary atmospheric condition. The vertical air motion effect partly offset by the uncertainty of the estimated precipitation Z-R relation. Average deviations of radar QPE are 25.5%, 51.2% under the stationary and non-stationary atmospheric conditions. After considering the raindrop spectrum distributions, the error of radar QPE is mainly from the vertical air motion. The deviation of QPE is related to data duration, shorter data usually lead to greater deviation. Simulation experiments are also carried out using PARSIVEL data to investigate this influence.
  • Fig. 1  The time series of stratiform precipitation on 5 May 2014

    (a) rain rate R, (b) air vertical motion wa, (c) effect value of rainrate Ra, (d) effect factor γ

    Fig. 2  The time series of convective precipitation on 10 May 2014

    (a) rain rate R, (b) air vertical motion wa, (c) effect value of rain rate Ra, (d) effect factor γ

    Fig. 3  The time series of stratiform precipitation on 5 May 2014

    (a) reflectivity Z, (b) rain rate R, (c) air vertical motion wa, (d) accuracy of Z-R relation σ, (e) effect factor γ′, (f) |γ′-σ|

    Fig. 4  The time series of convective precipitation on 10 May 2014

    (a) reflectivity Z, (b) rain rate R, (c) air vertical motion wa, (d) accuracy of Z-R relation σ, (e) effect factor γ′, (f) |γ′-σ|

    Table  1  Precipitation parameters and the air motion effect in the stratiform cloud

    日期 Zmax/dBZ Rmax+/(mm·h-1) wa/(m·s-1) Ra/(mm·h-1) γ/%
    2014-05-05 37.7 9.63 -0.01~0.73 [-0.01, 1.05] -0.31~13.99
    2014-05-06* 18.0 0.69 -0.59~0.78 [-0.13, 0.22] -26.80~28.05
    2014-05-08 41.7 16.86 -0.32~0.44 [-0.05, 0.48] -8.03~10.31
    2014-05-20 39.0 3.25 -0.50~0.93 [-0.04, 0.12] -13.61~10.93
    2014-06-10 42.3 17.73 -0.33~0.45 [-0.18, 0.89] -9.28~8.60
    注:*表示降水过程中小于1 mm的小粒子偏多,粒径和测速误差较大;+表示1 min最大降水量计算的降水强度,单位:mm·h-1
    DownLoad: Download CSV

    Table  2  Precipitation parameters and the air motion effect in the convective cloud

    日期 Zmax/dBZ Rmax+/(mm·h-1) wa/(m·s-1) Ra/(mm·h-1) γ/%
    2014-05-09 50.1 64.17 -0.99~1.03 [-0.28, 3.81] -38.59~24.30
    2014-05-10 51.7 48.25 -0.51~1.34 [-0.19, 3.03] -12.15~25.92
    2014-05-11 59.6 332.30 -0.57~0.95 [-5.44, 24.81] -7.43~11.58
    2014-05-22 41.4 11.88 -0.28~0.49 [-0.14, 0.39] -8.64~11.50
    2014-06-08 41.9 23.37 -0.39~0.40 [-0.07, 1.12] -12.70~6.41
    2014-06-09 43.2 21.44 -0.05~1.06 [-0.01, 1.16] -1.07~11.91
    注:+表示1 min最大降水量计算的降水强度,单位:mm·h-1
    DownLoad: Download CSV

    Table  3  A and b values of Z=AR0b in of two kinds of precipitation

    层状云降水 对流云降水
    时段 A b 时段 A b
    2014-05-05T00:10—01:10 350 1.29 2014-05-09T18:40—22:00 365 1.52
    2014-05-06T18:00—21:00* 74 0.64 2014-05-10T10:30—13:59 349 1.31
    2014-05-08T17:00—18:20 1315 1.36 2014-05-11T03:00—04:30 185 1.63
    2014-05-20T13:30—15:00 886 1.37 2014-05-22T21:30—23:10 255 1.30
    2014-06-10T03:30—08:30 312 1.37 2014-06-08T12:30—13:30 386 1.32
    2014-06-09T16:00—17:13 392 1.33
    注:*表示降水过程中小于1 mm的小粒子偏多,粒径和测速误差较大,不参加讨论。
    DownLoad: Download CSV

    Table  4  A and b values of Z=AR0b in two cases of precipitation

    2015年5月5日层状云降水 2014年5月10日对流云降水
    时段 A b 时段 A b
    00:20—00:35 308 1.3 12:50—13:00 185 1.4
    00:36—00:50 84 2.0 13:01—13:15 679 1.1
    00:51—01:05 144 1.5 13:16—13:30 246 1.8
    DownLoad: Download CSV
  • [1]
    李柏, 古庆同, 李瑞义, 等.新一代天气雷达灾害性天气监测能力分析及未来发展.气象, 2013, 39(3):265-280. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201303002.htm
    [2]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120104&flag=1
    [3]
    尹忠海, 张沛源.利用卡尔曼滤波校准方法估算区域降水量.应用气象学报, 2005, 16(2):213-270. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050226&flag=1
    [4]
    史锐, 程明虎, 崔哲虎, 等.用反射率因子垂直廓线联合雨量计校准估测夏季区域强降水.应用气象学报, 2005, 16(6):737-745. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050696&flag=1
    [5]
    邓雪娇, 黄浩辉, 吴兑.变分法在校准雷达定量估测降水中的应用.应用气象学报, 2000, 11(2):255-256. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000239&flag=1
    [6]
    张亚萍, 程明虎, 徐慧, 等.雷达定量测量降水在佛子岭流域径流模拟中的应用.应用气象学报, 2007, 18(3):395-305. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070351&flag=1
    [7]
    胡志群, 刘黎平, 肖艳姣.降水粒子空间取向对双线偏振雷达观测影响模拟研究.应用气象学报, 2008, 19(3):362-366. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080359&flag=1
    [8]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2001.
    [9]
    Wilson J W, Brandes E A.Radar measurement of rainfall-A summary.Bull Amer Meteor Soc, 1979, 60:1048-1058. doi:  10.1175/1520-0477(1979)060
    [10]
    Marshall J S, Palmer W M.The distribution of raindrops with size.J Meteor, 1948, 5:165-166. doi:  10.1175/1520-0469(1948)005
    [11]
    Wilson J W.Integration of radar and rain gage data for improved rainfall measurement.J Appl Meteor, 1970, 9:489-497. doi:  10.1175/1520-0450(1970)009
    [12]
    Battan L J.Vertical air motions and the Z-R relation.J Appl Meteor, 1976, 15:1120-1121. doi:  10.1175/1520-0450(1976)015
    [13]
    Austin P M.Relation between measured radar reflectivity and surface rainfall.Mon Wea Rev, 1987, 115:1053-1070. doi:  10.1175/1520-0493(1987)115
    [14]
    Campos E, Zawadzki I.Instrument uncertainties in Z-R relations.J Appl Meteor, 2000, 39:1088-1102. doi:  10.1175/1520-0450(2000)039
    [15]
    Lffler-Mang M, Joss J.An optical disdrometer for measuring size and velocity of hydrometeors.J Atmos Oceanic Technol, 2000, 17:130-139. doi:  10.1175/1520-0426(2000)017
    [16]
    李淘, 阮征, 葛润生, 等.激光雨滴谱仪测速误差对雨滴谱分布的影响.应用气象学报, 2016, 27(1):25-33. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160103&flag=1
    [17]
    Gunn R, Kinzer G D.The terminal velocity of fall for water drops in stagnant air.J Meteor, 1949, 6:243-248. doi:  10.1175/1520-0469(1949)006
    [18]
    Beard K V.Terminal velocity and shape of cloud and precipitation drops aloft.J Atmos Sci, 1976, 33:851-864. doi:  10.1175/1520-0469(1976)033
    [19]
    Kirankumar N V P, Rao T N, Radhakrishna B, et al.Statistical characteristics of raindrop size distribution in the southwest monsoon season.J Appl Meteor Climatol, 2008, 47:576-590. doi:  10.1175/2007JAMC1610.1
    [20]
    Kobayashi T, Adachi A.Retrieval of arbitrarily shaped raindrop size distributions from wind profiler measurements.J Atmos Oceanic Technol, 2004, 22:433-442. doi:  10.1175/JTECH1705.1
    [21]
    Rajopadhyaya D K, May P T, Cifelli R, et al.The effect of vertical air motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements.J Atmos Oceanic Technol, 1998, 15:1306-1319. doi:  10.1175/1520-0426(1998)015
    [22]
    Ruan Z, Ming H, Ma J, et al.Analysis of the microphysical properties of a stratiform rain event using an L-Band profiler radar.J Meteor Res, 2004, 28(2):268-280. http://www.cnki.com.cn/Article/CJFDTotal-QXXW201402007.htm
    [23]
    张培昌, 戴铁丕, 王登炎, 等.最优化法求Z-I关系及其在测定降水量的精度.气象科学, 1992, 12(3):333-338. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKX199203010.htm
    [24]
    何宽科, 范其平, 李开奇, 等.舟山地区台风降水Z-R关系研究及其应用.应用气象学报, 2007, 18(4):573-576. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070489&flag=1
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(4)

    Article views (5429) PDF downloads(809) Cited by()
    • Received : 2016-10-08
    • Accepted : 2017-01-10
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint