Yao Wen, Ma Ying, Gao Lina. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. DOI:  10.11898/1001-7313.20170209.
Citation: Yao Wen, Ma Ying, Gao Lina. Comparison of relative humidity data between L-band and 59-701 sounding system. J Appl Meteor Sci, 2017, 28(2): 218-226. DOI:  10.11898/1001-7313.20170209.

Comparison of Relative Humidity Data Between L-band and 59-701 Sounding System

DOI: 10.11898/1001-7313.20170209
  • Received Date: 2016-10-12
  • Rev Recd Date: 2017-01-06
  • Publish Date: 2017-03-31
  • The importance of consistency of upper-air observation reports in serial of space and time is well recognized by users and upper-air observation operators. It is the most effective way that the systematic differences between observations of pre and post updating radiosondes can be obtained using the method of direct intercomparison. To achieve that, two datasets are used to analyze effects of pre and post radiosondes updating on the relative humidity (RH) observed by 59-701 sounding system and L-band sounding system. The sensor for humidity measurement changes from goldbeaters skin to a carbon hygristor. One-month RH data of these two different sounding systems are compared directly to analyze the consistency of pre and post updating.Average RH biases between 59-701 and L-band sounding system from 1000 hPa to 200 hPa specified isobaric surface are analyzed. Results reveal that without considering the radiosonde errors upon the place, the season of the year, the time of the day, the RH of L-band is obviously lower than that of 59-701 sounding system in China, and differences are increased with altitudes. The RH bias of two sounding systems is less than 5% near the surface, but the value reaches more than 20% at 200 hPa. It shows that the RH bias of two sounding systems in winter is greater than that in summer, but differences with height are not the same in detail. Whether winter or summer, several stations reflect the problem that differences of average RH bias are much larger than the overall average RH bias, which shows that the difference change of average RH bias is not only related with the ambient temperature change, but also related to the change of RH. This phenomenon reflect possible "wet hysteresis loop" effect of humidity sensors. The difference of humidity components performance is not obvious between the type 59 radiosondes from Taiyuan and Shanghai. The effect of solar radiation on humidity components of these two types of radiosondes is also not obvious.Integrating comparison results, it shows that the RH bias between 59-701 and L-band sounding systems isn't affected by the type 59 radiosonde manufacturers, and RH observations are all affected by the ambient temperature, lag and wet hysteresis. But the influence details in different situations should be study further, and these results can be used as reference of correction by related departments.
  • Fig. 1  Distribution of sounding stations of compared relative humidity data between L-band and 59-701 systems

    Fig. 2  Average relative humidity difference between L-band and 59-701 systems of 59 sounding stations in China

    Fig. 3  Average relative humidity difference between L-band and 59-701 systems in winter and summer

    Fig. 4  Sounding records of Lhasa and Aletai in specified isobaric surfaces in summer (a) average relative humidity difference between L-band and 59-701 systems, (b) average temperature and relative humidity of L-band systems

    Fig. 5  Sounding records of Suolun and Tengchong in specified isobaric surfaces in winter (a) average relative humidity difference between L-band and 59-701 systems, (b) average temperature and relative humidity of L-band systems

    Fig. 6  Average relative humidity difference between L-band and 59-701 systems of type 59 radiosondes from Shanghai and Taiyuan

    Fig. 7  Average relative humidity difference between L-band and 59-701 systems

  • [1]
    WMO.Guide to Meteorological Instruments and Methods of Observation (7th Edition).WMO/TD-No.8, 2006.
    [2]
    姚雯, 马颖, 黄炳勋, 等.利用GPS定位资料分析L波段雷达测风性能.应用气象学报, 2009, 20(2):195-202. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090209&flag=1
    [3]
    李伟, 赵培涛, 郭启云, 等.国产GPS探空仪国际比对试验结果.应用气象学报, 2011, 22(4):453-462. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110408&flag=1
    [4]
    马颖, 姚雯, 黄炳勋.用初估场对比中芬探空仪温度和位势高度记录.应用气象学报, 2011, 22(3):336-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20110310&flag=1
    [5]
    姚雯, 马颖, 王战, 等.用数值预报初估场间接对比新疆两种型号探空系统.应用气象学报, 2012, 23(2):159-166. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120204&flag=1
    [6]
    王颖, 任国玉.中国高空温度变化初步分析.气候与环境研究, 2005, 10(4):780-790. http://www.cnki.com.cn/Article/CJFDTOTAL-QHYH200504009.htm
    [7]
    翟盘茂.中国历史探空资料中的一些过失误差及偏差问题.气象学报, 1997, 55(5):563-572. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXB705.004.htm
    [8]
    姚雯, 马颖.秒级探空数据随机误差评估.应用气象学报, 2015, 26(5):600-609. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150509&flag=1
    [9]
    钟志武.探空仪湿度元件及其发展概况.气象科技, 1978, 6(4):11-13. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ197804003.htm
    [10]
    姚玉琴, 姚倩, 钟志武.碳膜湿度元件及其性能试验.气象科学技术集刊 (7)——大气探测试验研究.北京:气象出版社, 1985:10-15.
    [11]
    Ivanov A, Kats A, Kurnosenko S, et al.WMO International Radiosondes Comparison.Phase 3.Final Report, WMO/TD-No.451, 1991.
    [12]
    赵柏林, 张霭琛.大气探测原理.北京:气象出版社, 1987:278-279.
    [13]
    徐文静, 郭亚田, 黄炳勋, 等.GTS探空仪碳湿敏元件性能测试数据分析及相对湿度订正.气象科技, 2007, 35(3):423-428. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200703027.htm
    [14]
    姚雯, 马颖, 徐文静.L波段电子探空仪相对湿度误差研究及其应用.应用气象学报, 2008, 19(3):356-361. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20080358&flag=1
    [15]
    中国气象局监测网络司. 气象仪器和观测方法指南 (第六版). 2005: 197-200.
    [16]
    李伟, 张春晖, 孟昭林, 等.L波段气象探测网运行监控系统设计.应用气象学报, 2010, 21(1):115-120. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100116&flag=1
    [17]
    马颖, 姚雯, 黄炳勋.59型探空仪与L波段电子探空仪温度和位势高度记录直接对比分析.应用气象学报, 2010, 21(2):214-220. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100211&flag=1
    [18]
    苑跃, 陈中钰, 赵晓莉, 等.L波段与59-701探空系统观测资料差异评估.气象, 2014, 40(2):238-246. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201402013.htm
    [19]
    张立功, 陈志斌, 王勇, 等.L波段雷达-电子探空仪系统对比观测分析.气象科技, 2007, 35(1):123-125. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKJ200701027.htm
    [20]
    李柏, 李伟.阳江第八届国际探空系统比对试验综述.气象科技进展, 2011, 1(3):6-14. http://www.cnki.com.cn/Article/CJFDTOTAL-QXKZ201103004.htm
    [21]
    郭启云, 李伟, 张玉存, 等.GTS1型、GTS1-1型、GTS1-2型探空仪性能试验与对比分析.气象水文海洋仪器, 2012(1):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QXSW201201004.htm
    [22]
    王英, 熊安元.L波段探空系统仪器换型对高空湿度资料的影响.应用气象学报, 2015, 26(1):76-86. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150108&flag=1
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3307) PDF downloads(505) Cited by()
    • Received : 2016-10-12
    • Accepted : 2017-01-06
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint