Zhu Haixia, Li Xiufen, Wang Ping, et al. Methods of accumulated temperature during rice growing stage in Heilongjiang Province. J Appl Meteor Sci, 2017, 28(2): 247-256. DOI:  10.11898/1001-7313.20170212.
Citation: Zhu Haixia, Li Xiufen, Wang Ping, et al. Methods of accumulated temperature during rice growing stage in Heilongjiang Province. J Appl Meteor Sci, 2017, 28(2): 247-256. DOI:  10.11898/1001-7313.20170212.

Methods of Accumulated Temperature During Rice Growing Stage in Heilongjiang Province

DOI: 10.11898/1001-7313.20170212
  • Received Date: 2016-07-11
  • Rev Recd Date: 2016-12-19
  • Publish Date: 2017-03-31
  • The accumulated temperature is an important index for regional thermal resource to be valued and development process of crops to be evaluated. Taking rice for example, based on the research of temperature coefficient and change of diurnal temperature, a new method of accumulated temperature is explored and studied with biological significance, so heat excessive and fewness could be shown accurately during growing stage of rice. The result shows that using daily extreme temperature, sub-sine simulation method and correct formula can simulate the diurnal variation of temperature for meteorological stations, such as Fuyu, Fujin, Muling and Harbin; temperature coefficients of rice are sectionally simulated above 30℃ and under 20℃ with Curve Equation Method. Results are extended for rice temperature coefficient. Temperature coefficients between three fundamental points of temperature are simulated. It could be as virtual quantification to three fundamental points of temperature. Hourly and daily equivalent temperature are got by combining temperature coefficient with simulated and corrected temperature of 24 h, and accumulated equivalent temperature is achieved during growing stage for rice. The method is preferable to the early method which values the accumulated temperature with daily mean temperature because it could not overlook positive role of temperature of part hours on rice at a low temperature condition, and it could not exaggerate positive role of temperature of part hours on rice at a high temperature condition. The method shows that different rice growing stages is various reaction of changing temperature. Furthermore, continuous quantification of heat resources is achieved during growing of rice. Accuracy is increased for equivalent accumulated temperature during the growing of rice. Taking Harbin city for example, the stage is main period of vigorous growth because daily equivalent temperature is close to daily mean temperature, and even is above daily mean temperature in June and July. In the last 55 years, the accumulated temperature increase significantly by 92℃·d/(10 a); they are sharp periods of that in the 1970s and the 1990s, with the climate change trend rate 359℃·d/(10 a) and 559℃·d/(10 a). From the 2000s to now, heat resource is full. Three fundamental points and diurnal changes of the temperature are taken in studying methods of accumulated equivalent temperature, so accuracy is increased for computation of accumulated equivalent temperature, and could show heat difference in the time and space.
  • Fig. 1  Relations between temperature and temperature coefficient during rice growing stage

    Fig. 2  Curves of observed temperature and corrected simulated temperature at Harbin Station

    Fig. 3  Variations of hourly equivalent temperature and hourly temperature at Harbin Station on 17 May (a), 20 May (b), 10 Jul (c) and 31 Aug (d) in 2015

    Fig. 4  Variations of daily temperature and daily equivalent temperature at Harbin Station during rice growing in 2015

    Fig. 5  Variations of accumulated equivalent temperature anomaly during rice growing stage at Harbin Station from 1961 to 2015

    Table  1  Temperature coefficient (from reference [10])

    温度/℃ 温强系数
    20 0.81
    21 0.86
    22 0.91
    23 0.95
    24 0.99
    25 1.02
    26 1.03
    27 1.04
    28 1.03
    29 1
    30 0.94
    DownLoad: Download CSV

    Table  2  Correct formula of imitation temperature at Harbin Station

    时间 回归方程
    01:00 ts=0.154+0.974ta
    02:00 ts=1.107+0.951ta
    03:00 ts=1.76+0.921ta
    04:00 ts=1.957+0.929ta
    05:00 ts=1.951+0.927ta
    06:00 ts=1.611+0.946ta
    07:00 ts=1.851+0.957ta
    08:00 ts=2.008+0.972ta
    09:00 ts=2.416+0.966ta
    10:00 ts=2.391+0.97ta
    11:00 ts=1.734+0.991ta
    12:00 ts=0.348+1.034ta
    13:00 ts=-0.217+1.033ta
    14:00 ts=-1.156+1.042ta
    15:00 ts=-1.421+1.032ta
    16:00 ts=-1.626+1.017ta
    17:00 ts=-1.189+0.981ta
    18:00 ts=-1.626+0.98ta
    19:00 ts=-2.286+0.986ta
    20:00 ts=-2.576+0.976ta
    21:00 ts=-2.571+0.97ta
    22:00 ts=-2.097+0.972ta
    23:00 ts=-1.51+0.98ta
    24:00 ts=-0.767+0.984ta
    注:ts代表订正后温度,ta代表分段模拟温度;方程均达到0.01显著性水平。
    DownLoad: Download CSV

    Table  3  Mean value comparison of observed and corrected simulated temperature from May to Sep

    月份 富裕站 富锦站 穆棱站 哈尔滨站
    观测值/℃ 模拟订正值/℃ 观测值/℃ 模拟订正值/℃ 观测值/℃ 模拟订正值/℃ 观测值/℃ 模拟订正值/℃
    5 12.6 12.5 12.5 12.5 13.1 12.9 14.2 14.3
    6 20.5 20.4 20.0 20.1 19.4 19.4 22.0 22.0
    7 23.2 23.1 22.0 21.7 22.0 21.8 23.6 23.3
    8 21.7 22.0 22.0 22.0 21.0 21.1 22.5 22.6
    9 14.3 14.4 15.0 15.2 14.9 15.3 16.3 16.5
    DownLoad: Download CSV

    Table  4  Temperature coefficient during rice growing stage in Heilongjiang Province

    温度/℃ 温强系数
    12 0
    13 0.19
    14 0.3
    15 0.4
    16 0.49
    17 0.58
    18 0.66
    19 0.73
    20 0.81
    21 0.86
    22 0.91
    23 0.95
    24 0.99
    25 1.02
    26 1.03
    27 1.04
    28 1.03
    29 1
    30 0.94
    31 0.83
    32 0.68
    33 0.5
    34 0.28
    35 0
    DownLoad: Download CSV

    Table  5  The comparison of daily equivalent temperature by two methods

    日期 日平均温度/℃ 日温度当量/℃
    方法a 方法b
    05-17 11.7 3.2 0
    05-20 16.2 9.0 7.9
    07-10 28.8 21.2 29.6
    08-31 20.7 17.3 16.7
    DownLoad: Download CSV

    Table  6  The comparison of accumulated equivalent temperature on observed and simulated hourly temperature from 20 May to 30 Sep in 2015

    站名 观测当量积温/(℃·d) 模拟当量积温/(℃·d) 偏差/(℃·d)
    富裕站 2018 2006 12
    富锦站 1896 1896 0
    穆棱站 1854 1858 -4
    哈尔滨站 2255 2261 -6
    DownLoad: Download CSV
  • [1]
    西涅里席柯夫B B.普通农业气象学.北京:高等教育出版社, 1959:84-95.
    [2]
    郑大玮, 孙忠富.关于积温一词及其度量单位科学性问题的讨论.中国农业气象, 2010, 31(2):165-169. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGNY201002003.htm
    [3]
    潘志华, 龚绍先.环境因子有效性与春小麦生育期模型的建立.中国农业大学学报, 1998, 3(3):41-47. http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX199803007.htm
    [4]
    屈振江, 周广胜, 魏钦平.苹果花期冻害气象指标和风险评估.应用气象学报, 2016, 27(4):385-395. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160401&flag=1
    [5]
    刘少军, 周广胜, 房世波.1961—2010年中国橡胶寒害的时空分布特征.生态学杂志, 2015, 34(5):1282-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201505015.htm
    [6]
    张家诚, 高素华, 潘亚茹.我国温度变化与冬季采暖气候条件的探讨.应用气象学报, 1992, 3(1):70-75. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920114&flag=1
    [7]
    Bai Qinfeng, Wang Jinghong, Huo Zhiguo, et al.Analysis of meteorological conditions of freeze damage to citrus in Southern Shaanxi in the winter of 2010 and defensive countermeasures.Agricultural Science & Technology, 2013, 14(3):444-449. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNNT201303017.htm
    [8]
    王宏燕, 彭驰, 侯中田.降水和地积温对有机肥腐解的动态分析.黑龙江省农业大学学报, 1996, 27(1):20-25. http://www.cnki.com.cn/Article/CJFDTOTAL-DBDN601.003.htm
    [9]
    林恭.用"有效气温当量"估算水稻抽穗期.宁夏农业科技, 1982, 25(3):56. http://www.cnki.com.cn/Article/CJFDTOTAL-NXNL198203029.htm
    [10]
    沈国权.当量积温及其应用.气象, 1981, 32(7):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198107009.htm
    [11]
    沈国权.影响作物发育速度的非线性温度模式.气象, 1980, 31(6):9-11. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX198006005.htm
    [12]
    郭建平, 高素华.CO2浓度倍增对大豆叶片和总生物量的影响研究.应用气象学报, 1995, 6(增刊Ⅰ):62-68. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX5S1.008.htm
    [13]
    钱拴, 陈晖, 王良宇.全国棉花发育期业务预报方法研究.应用气象学报, 2007, 18(4):539-547. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070484&flag=1
    [14]
    张雪芬, 王春乙, 陈东, 等.基于位温的小麦发育期的小网格推算方法.应用气象学报, 2007, 18(6):865-869. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200706130&flag=1
    [15]
    刘实, 王勇, 缪启龙, 等.近年50年黑龙江省地区热量资源变化特征.应用气象学报, 2010, 21(3):266-278. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100302&flag=1
    [16]
    Lindseya A, Newman J E.Use of official weather data in spring time-temperature analysis of an Indiana phonological record.Ecology, 1956, 37(4):812-823. doi:  10.2307/1933072
    [17]
    余卫东, 汤新海.气温日变化过程的模拟与订正.中国农业气象, 2009, 30(1):35-40. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811016089.htm
    [18]
    张继祥, 刘克长, 魏钦平, 等.气象要素 (气温、太阳辐射、风速和相对湿度) 日变化进程的数理模拟.山东农业大学学报 (自然科学版), 2002, 33(2):179-183. http://www.cnki.com.cn/Article/CJFDTOTAL-SCHO200202014.htm
    [19]
    姜会飞, 温德永.基于线性生长假设利用极端温度计算日积温的方法.中国农业大学学报, 2013, 18(1):82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-NYDX201301011.htm
    [20]
    姜会飞, 温德永, 李楠, 等.利用正弦分段法模拟气温日变化.气象与减灾研究, 2010, 33(3):61-65. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201003011.htm
    [21]
    潘敖大, 高苹, 刘梅, 等.基于海温的江苏省水稻高温热害预测.应用生态学报, 2010, 21(1):136-144. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201001021.htm
    [22]
    任义方, 高苹, 王春乙.江苏高温热害对水稻的影响及成因分析.自然灾害学报, 2010, 19(5):101-107. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201005016.htm
    [23]
    吴钟玲, 陈铁如, 李琳一.当量积温的计算.吉林气象, 1996, 3(3):15-16. http://www.cnki.com.cn/Article/CJFDTOTAL-JLQX603.005.htm
    [24]
    中国气象局. 地面气象观测规范. 北京: 气象出版社, 2003: 35-45.
    [25]
    Ephrath J E, Goudriaan J, Marani A.Modeling diurnal patterns of air temperature radiation wind speed and relative humidity by equations from daily characteristics.Agricultural Systems, 1996, 51(4):377-393. doi:  10.1016/0308-521X(95)00068-G
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(6)

    Article views (5198) PDF downloads(1179) Cited by()
    • Received : 2016-07-11
    • Accepted : 2016-12-19
    • Published : 2017-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint