Cheng Zhengquan, Lin Liangxun, Yang Guojie, et al. Rapid intensification and associated large-scale circulation of super typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. DOI:  10.11898/1001-7313.20170306.
Citation: Cheng Zhengquan, Lin Liangxun, Yang Guojie, et al. Rapid intensification and associated large-scale circulation of super typhoon Rammasun in 2014. J Appl Meteor Sci, 2017, 28(3): 318-326. DOI:  10.11898/1001-7313.20170306.

Rapid Intensification and Associated Large-scale Circulation of Super Typhoon Rammasun in 2014

DOI: 10.11898/1001-7313.20170306
  • Received Date: 2016-09-14
  • Rev Recd Date: 2017-01-09
  • Publish Date: 2017-05-31
  • Most offshore tropical cyclones (TCs) would be weaken because of energy decay due to land surface friction, while a small part of them intensify instead. There is an average of 0.8 TCs per year which intensifies abruptly in offshore waters of South China. Statistical, diagnostic and numerical work reveal that sea surface temperature (SST), TC inner structure and characteristics of atmospheric circulation are the most important factors. And for the latter, strength or strengthening of a low-level jet linking with TC and weak environmental wind vertical shear are significant, and widely applied in operation to judge the TC intensity change trend. The mechanism of TC abrupt intensification in offshore waters is still not fully revealed, and therefore it is still very difficult to give an accurate forecast for these phenomena in the route operation. Wrong judge and forecast for TC abrupt intensification in offshore waters would lead to underestimation and insufficient defense of TC disasters. Super typhoon Rammasun is intensifying continuously for over 24 h before it makes landfall at Wenchang of Hainan at 0730 UTC 18 July 2014, with 40 m·s-1 of maximal central wind speed, 960 hPa of minimal central sea level pressure at central part of South China Sea at 0000 UTC 17 Jul 2014, 72 m·s-1 888 hPa at 0600 BT 18 Jul 2014. And Rammasun becomes the strongest landfalling TC on national record.Based on CMA TC track data, satellite and radar images, NCEP reanalysis data, NOAA high-resolution blended analysis of daily optimum interpolation SST and synoptic analysis and kinetic energy budget, study is carried out on the characteristic of abrupt intensity change of Rammasun and its cause.Synoptic analysis show that the continuous abrupt intensification of Rammasun is concerned with the favorable atmospheric background circulation, the anomalous warm SST in central and northern part of South China Sea during the middle ten days of July 2014, intensification of the southwestern low level jet and cross-equatorial flow linking with Rammasun, and the maintenance of upper level outflow especially the unstable atmosphere in the downstream region. Its moving into the unstable circumstance is advantageous to the convective activities and the efficiency of convective condensation latent heat release within the cyclone circulation, and leads to the maintenance or intensification of the TC.Kinetic energy budget output reveals, main kinetic energy source at low level is from the wind crossing through the isobar, and this is connected with vertical circulation of ascending in the central area and descending in the outer region forced by convective condensation latent head. To consider in view of convective activities and condensation latent heat release is helpful for understanding of TC intensity change and forecast in operation.
  • Fig. 1  The track and the maximal sea surface temperature during 15-19 Jul 2014(a) and the central maximal wind speed with minimal pressure (b) of Rammasum in 2014

    Fig. 2  Area-averaged sea level pressure, sea surface latent flux and sensible heat flux within a domain of 3°×3° where Rammasum locates in the center from 13 Jul to 19 Jul in 2014

    Fig. 3  850 hPa flow field the (the vector) and water vapor flux (the shaded, unit:g·s-1·hPa-1·cm-1)

    (a)0000 UTC 17 Jul 2014, (b)0000 UTC 18 Jul 2014

    Fig. 4  850 hPa water vapor integration for boundaries (a) and horizontal water vapor integration for southern boundary (b) from 13 Jul to 19 Jul in 2014

    Fig. 5  6 h differences for 850 hPa total energy and each item from 12 Jul to 18 Jul in 2014

    Fig. 6  925 hPa potential pseudo-equivalent temperature (the shaded) and winds (the vector) at 0000 UTC 16 Jul 2014

    Fig. 7  Area-averaged each item of kinetic energy budget from 13 Jul to 19 Jul in 2014(unit:10-4m2·s-3)

    (a) kinetic energy production term, (b) divergent term of horizontal kinetic energy flux, (c) divergent term of vertical kinetic energy flux, (d) dissipative term

  • [1]
    冯锦全, 陈多.我国近海热带气旋强度突变的气候特征分析.热带气象学报, 1995, 11(1):35-42. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX199501004.htm
    [2]
    麻素红, 吴俞, 瞿安详, 等.T213与T639模式热带气旋预报误差对比.应用气象学报, 2012, 23(2):167-173. doi:  10.11898/1001-7313.20120205
    [3]
    何夏江, 曾琮.热带气旋路径强度预报——SAPC法.应用气象学报, 1996, 7(1):45-52. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960106&flag=1
    [4]
    许映龙, 张玲, 高拴柱.我国台风预报业务的现状及思考.气象, 2010, 36(7):43-49. doi:  10.7519/j.issn.1000-0526.2010.07.009
    [5]
    漆梁波, 黄丹青, 余晖.1999-2003年西北太平洋热带气旋综合预报的误差分析.应用气象学报, 2006, 17(1):73-80. doi:  10.11898/1001-7313.20060113
    [6]
    林良勋, 梁巧倩, 黄忠.华南近海急剧加强热带气旋极其环流综合分析.气象, 2006, 32(2):14-18. doi:  10.7519/j.issn.1000-0526.2006.02.003
    [7]
    陈联寿.热带气旋研究和业务预报技术的发展.应用气象学报, 2006, 17(6):672-681. doi:  10.11898/1001-7313.20060605
    [8]
    Alexander L, Michael L B.Structural and intensity changes of Hurricane Bret (1999).PartⅠ:Environmental influences.Mon Wea Rev, 2008, 136:4320-4333.
    [9]
    Holliday C R, Thompson A H.Climatological characteristics of rapidly intensifying typhoon.Mon Wea Rev, 1979, 107:1022-1034. doi:  10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2
    [10]
    于玉斌.我国近海热带气旋强度突变的机理研究.北京:中国气象科学研究院, 2007.
    [11]
    陈联寿, 丁一汇.西太平洋台风概论.北京:科学出版社, 1979.
    [12]
    Gallina G M, Velden C S.Environmental Vertical Wind Shear and Tropical Cyclone Intensity Change Utilizing Enhanced Satellite Derived Wind Information.Extended Abstracts, 25th Conf on Hurricanes and Tropical Meteorology, Amer Meteor Soc, 2002.
    [13]
    于玉斌, 杨昌贤, 姚秀萍.近海热带气旋强度突变的垂直结构特征分析.大气科学, 2007, 31(5):876-882. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200705010.htm
    [14]
    徐明, 余锦华, 赖安伟, 等.环境风垂直切变与登陆台风强度变化关系的统计分析.暴雨灾害, 2009(4):339-344. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX200904009.htm
    [15]
    张玲. 加强集合预报订正和卫星资料分析对改进2012年疑难台风预报的思考. 第九届全国灾害性天气预报技术研讨会, 2012.
    [16]
    范蕙君, 李修芳.用数字云图确定热带气旋强度方法的检验和应用.应用气象学报, 1996, 7(1):113-117. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960116&flag=1
    [17]
    王瑾, 江吉喜.热带气旋强度的卫星探测客观估计方法研究.应用气象学报, 2005, 16(3):283-292. doi:  10.11898/1001-7313.20050302
    [18]
    鲁小琴, 雷小途, 余晖, 等.基于卫星资料进行热带气旋强度客观估算.应用气象学报, 2014, 25(1):52-58. doi:  10.11898/1001-7313.20140106
    [19]
    阎俊岳.近海热带气旋迅速加强的气候特征.应用气象学报, 1996, 7(1):28-35. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960104&flag=1
    [20]
    Ying M, Zhang W, Yu H, et al.An overview of the China Meteorological Administration tropical cyclone database.J Atmos Oceanic Technol, 2014, 31:287-301. doi:  10.1175/JTECH-D-12-00119.1
    [21]
    丁一汇.天气动力学中的诊断分析方法.北京:科学出版社, 1989.
    [22]
    林良勋.广东省天气预报技术手册.北京:气象出版社, 2006.
    [23]
    朱乾根, 林瑞锦, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 2009.
    [24]
    吕心艳, 高拴柱, 董林.近海台风快速增强的环境风垂直切变统计特征.天气预报, 2016(1):52-57. http://cdmd.cnki.com.cn/Article/CDMD-85101-1015305948.htm
    [25]
    钮学新, 杜惠良, 刘建勇, 等.0216号台风降水及其影响降水机制的数值模拟试验.气象学报, 2005, 63(1):57-68. doi:  10.11676/qxxb2005.007
    [26]
    程正泉, 陈联寿, 李英.登陆台风降水的大尺度环流诊断分析.气象学报, 2009, 67(5):840-850. doi:  10.11676/qxxb2009.082
    [27]
    于玉斌, 姚秀萍.中国近海热带气旋强度突变的热力特征.气象学报, 2010, 68(1):48-58. doi:  10.11676/qxxb2010.006
    [28]
    吕美仲, 侯志明, 周毅.动力气象学.北京:气象出版社, 2004.
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (2762) PDF downloads(600) Cited by()
    • Received : 2016-09-14
    • Accepted : 2017-01-09
    • Published : 2017-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint