Chen Shuqin, Zhang Lina, Yu Xiaoding, et al. Environmental conditions of three squall lines in the north part of Zhejiang Province. J Appl Meteor Sci, 2017, 28(3): 357-368. DOI:  10.11898/1001-7313.20170309.
Citation: Chen Shuqin, Zhang Lina, Yu Xiaoding, et al. Environmental conditions of three squall lines in the north part of Zhejiang Province. J Appl Meteor Sci, 2017, 28(3): 357-368. DOI:  10.11898/1001-7313.20170309.

Environmental Conditions of Three Squall Lines in the North Part of Zhejiang Province

DOI: 10.11898/1001-7313.20170309
  • Received Date: 2016-10-14
  • Rev Recd Date: 2017-04-10
  • Publish Date: 2017-05-31
  • Based on radar data and intensive surface observations, combined with JMA reanalysis data, a typical case with three consecutive squall lines is analyzed, which occurred in the north part of Zhejiang Province on 2 July 2008. Corresponding atmospheric conditions are investigated in detail. Special emphasis is given on the relationship between convection current and underlying surface state such as temperature, humidity and convergence of wind, especially the impact of land-sea boundary on rebirth and strengthening of convection current. Besides, the forming processes of the third typical bow echo, including development, attenuation, effluent, inflow, rebirth and dissemination of convection cell are studied in horizontal and vertical direction. After that, favorable conditions for all evolutionary stages and interrelation of three squall lines are summarized.It shows that there are specific places where newly-born convections and convection reinforcements are likely to be found, such as high temperature region, high humidity region, frontal surface, convergence line and coastline. In general, it's favorable for convection when the ground temperature is more than 32℃, the dew point temperature is greater than 23℃, the ground temperature gradient is greater than 0.1℃/km, or the ground level wind shear is greater than 5 m/s. Severe convective systems also react on underlying surface, and then convective systems are influenced as well, severe thunderstorm causes strong divergent outflow and cool pool is formed on ground layer. Cold air in the front of thunderstorm diverges outwards and causes gust front, which lifts the pre-frontal warm and moist. New convective cells develop close to the gust front, so that convective systems can diffuse forward. The question about convective systems' change crossing coastlines is complex. If they move to the sea by day, the temperature of underlying surface will descend and system's intensity would be weaken easily, and the situation will become opposite by night. In addition, the convergence of wind and intensity of convective systems enhance over the sea on account of small frictional forces and strong wind speed. Severe thunderstorm generates and strengthens at coastlines frequently, and particularly at the junction between the gust front and the coastline due to convergence caused by wind discontinuity around coastlines. Finally, the convection weather concept model before the trough is summarized:The area is within the scope of subtropical high before the trough at 500 hPa. There is strong southwest jet and warm wet tongue at low level, which forms unstable stratification. There is a big wind belt at 500 hPa, which forms a larger vertical wind shear from 0 to 6 km level, adding to the potential instability, and a strong convection system is triggered if a cold front comes.
  • Fig. 1  The composite reflectivity of Zhoushan radar on 2 Jul 2008

    (a)1618 BT, (b)1832 BT, (c)2040 BT

    Fig. 2  The reflectivity of Hangzhou radar at 1.5° elevation at 1403 BT (a), 1503 BT (b), surface wind, temperature (red lines, unit:℃) and pressure (blue lines, unit:hPa) at 1400 BT (c), surface wind, temperature change (dots, unit:℃) in an hour and dew point (green lines, unit:℃) at 1500 BT (d) on 2 Jul 2008

    Fig. 3  The composite reflectivity of Zhoushan radar at 1839 BT (a) and specific humidity at 1800 BT (unit:g/kg)(b) on 2 Jul 2008

    Fig. 4  The vertical cross section of reflectivity (a) and radial velocity (b) along 291° direction at 1845 BT 2 Jul 2008

    Fig. 5  Surface wind field, 1 h temperature change (dots, unit:℃) and dew point (contours, unit:℃) at 1900 BT (a) and 2000 BT (b) and the vertical wind shear of 0-3 km (unit:m/s) based on JMA/RSM reanalysis at 1400 BT (c) and 2000 BT (d) on 2 Jul 2008

    Fig. 6  The reflectivity factor with 0.5° elevation of Zhoushan radar at 1933 BT (a), 1945 BT (b), 1958 BT (c), 2010 BT (d), 2028 BT (e), 2040 BT (f) on 2 Jul 2008, profiles of reflectivity factor at 1958 BT (g), 2010 BT (h), 2016 BT (i) and radial velocity at 1958 BT (j), 2010 BT (k) and 2016 BT (l) of convection cell G (black line is profile position in Fig.6c, 6d and 6e)

    Fig. 7  A conceptual model of MCS in front of trough development

  • [1]
    俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [2]
    何立富, 陈涛, 周庆亮, 等.北京"7.10"暴雨β-中尺度对流系统分析.应用气象学报, 2007, 18(5):655-665. doi:  10.11898/1001-7313.20070501
    [3]
    王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报, 2011, 22(6):724-731. doi:  10.11898/1001-7313.20110610
    [4]
    胡艳. 上海地区雷暴天气及下垫面特征对它的影响分析. 南京: 南京信息工程大学, 2006.
    [5]
    蒙伟光, 闫敬华, 扈海波.热带气旋背景条件下的城市效应与广州夏季雷暴.中国科学 (地球科学), 2007, 37(12):1660-1668. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200711011086.htm
    [6]
    杨薇, 苗峻峰, 谈哲敏.太湖地区湖陆风对雷暴过程影响的数值模拟.应用气象学报, 2014, 25(1):59-70. doi:  10.11898/1001-7313.20140107
    [7]
    黄荣, 王迎春, 张文龙.复杂地形下北京一次局地雷暴新生和增强机制初探.暴雨灾害, 2012, 31(3):232-241. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201203005.htm
    [8]
    陈双, 王迎春, 张文龙, 等.复杂地形下雷暴增强过程的个例研究.气象, 2011, 37(7):802-813. doi:  10.7519/j.issn.1000-0526.2011.07.004
    [9]
    孙继松, 王华, 王令, 等.城市边界层过程在北京2004年7月10日局地暴雨过程中的作用.大气科学, 2006, 30(2):221-234. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK200602004.htm
    [10]
    王华, 孙继松.下垫面物理过程在一次北京地区强冰雹天气中的作用.气象, 2008, 34(3):16-21. doi:  10.7519/j.issn.1000-0526.2008.03.003
    [11]
    Merry M, Panofsky H A.Statistics of vertical motion over land and water.Quart J Roy Mereor Soc, 1976, 102(431):255-260. doi:  10.1002/(ISSN)1477-870X
    [12]
    沈树勤.下垫面热力非均匀性及其对冰雹等强对流天气影响的初步研究.气象, 1991, 17(8):20-25. doi:  10.7519/j.issn.1000-0526.1991.08.008
    [13]
    Xu L, Raman S, Madala R V, er al.A non-hydrostatic modeling study of surface moisture effects on mesoscale convection induced by sea breeze circulation.Meteor Atmos Phys, 1996, 58(14):103-122.
    [14]
    Hodanish S, Sharp D, Collind W, et al.A 10-yr monthly lightning climatology of Flirida:1986-95.Wea Forecasting, 1997, 12(3):439-448. doi:  10.1175/1520-0434(1997)012<0439:AYMLCO>2.0.CO;2
    [15]
    汪雅, 苗峻峰, 谈哲敏.宁波地区海-陆下垫面差异对雷暴过程影响的数值模拟.气象学报, 2013, 71(6):1146-1159. doi:  10.11676/qxxb2013.088
    [16]
    王镇铭, 杜惠良, 杨诗芳.浙江省天气预报手册.北京:气象出版社, 2013:459.
    [17]
    何宽科, 王坚侃.舟山海域一次强对流天气过程多谱勒雷达资料分析.海洋预报, 2005, 22(2):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-HYYB200502009.htm
    [18]
    沈杭锋, 翟国庆, 朱补全, 等.浙江沿海中尺度辐合线对飑线发展影响的数值试验.大气科学, 2010, 34(6):1127-1140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201006008.htm
    [19]
    王东法, 沈杭锋, 高领花, 等.浙江"6.10"飑线过程中尺度分析.浙江大学学报, 2009, 36(2):216-223. http://www.cnki.com.cn/Article/CJFDTOTAL-HZDX200902025.htm
    [20]
    陈淑琴, 黄辉, 周丽琴, 等.对流单体在杭州湾入海时的强度变化分析.气象, 2011, 37(7):889-896. doi:  10.7519/j.issn.1000-0526.2011.07.014
    [21]
    谢健标, 林良勋, 颜文胜, 等.广东2005年"3·22"强飑线天气过程分析.应用气象学报, 2007, 18(3):321-329. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070354&flag=1
    [22]
    慕熙昱, 党人庆, 陈秋萍, 等.一次飑线过程的雷达回波分析与数值模拟.应用气象学报, 2007, 18(1):42-49. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070108&flag=1
    [23]
    金祺, 袁野, 纪雷, 等.安徽滁州夏季一次飑线过程的雨滴谱特征.应用气象学报, 2015, 26(6):725-734. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150609&flag=1
    [24]
    漆梁波, 陈永林.一次长江三角洲飑线的综合分析.应用气象学报, 2004, 15(2):162-173. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040221&flag=1
    [25]
    姚建群, 戴建华, 姚祖庆.一次强飑线的成因及维持和加强机制分析.应用气象学报, 2005, 16(6):746-753. doi:  10.11898/1001-7313.20050615
    [26]
    高梦竹, 陈耀登, 章丽娜, 等.对流移入杭州湾后飑线发展机制分析.气象, 2017, 43(1):56-66. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201701006.htm
    [27]
    丁一汇, 李鸿洲, 章名立, 等.我国飑线发生条件的研究.大气科学, 1982, 6(1):18-27. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK198201002.htm
    [28]
    Rotunno R, Klemp J B, Weisman M L.A theory for strong long-lived squall lines.J Atmos Sci, 1988, 45(3):463-485. doi:  10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
  • 加载中
  • -->

Catalog

    Figures(7)

    Article views (3515) PDF downloads(456) Cited by()
    • Received : 2016-10-14
    • Accepted : 2017-04-10
    • Published : 2017-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint