Han Shuai, Shi Chunxiang, Jiang Lipeng, et al. The simulation and evaluation of soil moisture based on CLDAS. J Appl Meteor Sci, 2017, 28(3): 369-378. DOI:  10.11898/1001-7313.20170310.
Citation: Han Shuai, Shi Chunxiang, Jiang Lipeng, et al. The simulation and evaluation of soil moisture based on CLDAS. J Appl Meteor Sci, 2017, 28(3): 369-378. DOI:  10.11898/1001-7313.20170310.

The Simulation and Evaluation of Soil Moisture Based on CLDAS

DOI: 10.11898/1001-7313.20170310
  • Received Date: 2016-10-23
  • Rev Recd Date: 2017-02-22
  • Publish Date: 2017-05-31
  • The national weather service modernization is the core and key to the modernization of the national weather, which is an important symbol to enhance China meteorological technology level and professional ability. China Meteorological Administration publishes the national meteorological modernization objectives and evaluation plan (2014-2020), which clearly proposes the development of multi-source data fusion data set, and the land surface data fusion is one of the most important parts. Using the technique of multi-source data fusion, China Meteorological Administration Land Data Assimilation System (CLDAS) integrates observation of ground, satellite and numerical model to obtain the high-quality temperature, pressure, humidity, wind speed, the grid point data of precipitation and radiation and other factors, and then to drive land surface model to simulate different depths of soil temperature and moisture.CLM3.5 land surface model is used to simulate land surface soil moisture of different depths, and then results are assessed using 3 ground datasets. The first is the automatic soil moisture observation of CMA in 2013, which is checked strictly by quality control process, the second is CTP-SMTMN data, and the last is GLDAS soil moisture and ERA-Interim Reanalysis. A comprehensive assessment for soil moisture is conducted and it shows that the correlation coefficient reaches a high level in most provinces, which can better reflect the objective change of soil moisture and has a strong guiding role. In statistical analysis of time series by selecting the representative station, surface soil moisture changing rates are higher than deeper layers, because the interaction between surface soil and the atmospheric boundary layer feedback is more sensitive, and the water heat exchange are more frequent. On the Tibetan Plateau, using Taylor diagrams comparison, it's found simulation results in the appraisal process of different indices are better than the other two kinds of foreign soil moisture data. In summary, the correlation coefficient is up to 0.8, and deviation is about-0.04 mm3·mm-3 to 0.04 mm3·mm-3 and root mean square error is lower than 0.04-0.05 mm3·mm-3 from stations of provinces average and all over the country.
  • Fig. 1  Time serise of simulated and observated soil moisture in 2013

    Fig. 2  Hourly volume of soil water content of 0-10 cm from 15 Apr 2013 to 31 Oct 2013

    Fig. 3  Hourly volume of soil water content of 10-40 cm from 15 Apr 2013 to 31 Oct 2013

    Fig. 4  Displaying pattern statistics of Taylor based on 3 kinds of soil moisture

    Table  1  Assesment of simulated soil moisture in different provinces

    地名 相关系数 偏差/(mm3·mm-3) 均方根误差/(mm3·mm-3)
    安徽 0.892 0.006 0.032
    北京 0.926 0.031 0.038
    重庆 0.807 0.036 0.043
    福建 0.907 0.028 0.033
    甘肃 0.912 0.020 0.024
    广东 0.872 0.005 0.018
    广西 0.884 0.013 0.017
    贵州 0.867 -0.038 0.052
    海南 0.944 0.062 0.063
    河北 0.965 0.063 0.065
    黑龙江 0.737 -0.042 0.049
    河南 0.876 0.004 0.018
    湖北 0.890 -0.021 0.025
    湖南 0.944 0.002 0.012
    江苏 0.852 0.033 0.037
    江西 0.779 0.051 0.059
    吉林 0.685 0.033 0.041
    内蒙古 0.802 0.050 0.052
    青海 0.890 0.001 0.023
    陕西 0.942 0.049 0.051
    上海 0.842 0.003 0.021
    山西 0.938 0.045 0.048
    四川 0.870 0.074 0.076
    天津 0.948 0.017 0.024
    新疆 0.819 -0.041 0.043
    西藏 0.779 0.081 0.085
    云南 0.971 -0.056 0.057
    浙江 0.850 0.061 0.071
    DownLoad: Download CSV

    Table  2  Information of typical stations

    站名 区站号 省份 位置
    敖汉 54225 内蒙古 42.28°N, 119.92°E
    龙游南 58547 浙江 29.03°N, 119.18°E
    江油 56195 四川 31.80°N, 104.73°E
    琼山 59757 海南 20.00°N, 110.37°E
    DownLoad: Download CSV
  • [1]
    孙菽芬, 金继明.陆面过程模式研究中的几个问题.应用气象学报, 1997, 8(增刊Ⅰ):50-57. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.007.htm
    [2]
    史学丽.陆面过程模式研究简评.应用气象学报, 2001, 12(1):102-112. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010114&flag=1
    [3]
    吴国雄, 张学洪, 刘辉, 等.LASG全球海洋-大气-陆面系统模式 (GOALS/LASG) 及其模拟研究.应用气象学报, 1997, 8(增刊Ⅰ):15-28. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX7S1.003.htm
    [4]
    李新, 黄春林, 车涛, 等.中国陆面数据同化系统研究的进展与前瞻.自然科学进展, 2007, 17(2):163-173. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200702004.htm
    [5]
    师春香, 谢正辉, 钱辉, 等.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化.中国科学 (地球科学), 2011, 41(3):375-385. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103009.htm
    [6]
    Tian X J, Xie Z H.Effects of sample density on the assimilation performance of an explicit four-dimensional variational data assimilation method.Science in China, 2009, 52(11):1849-1856. doi:  10.1007/s11430-009-0178-9
    [7]
    秦军, 阎广建, 刘绍民, 等.集合卡曼滤波在遥感反演地表参数中的应用——以核驱动模型反演BRDF为例.中国科学 (地球科学), 2005, 35(8):790-798. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200508011.htm
    [8]
    史学丽.陆面过程模式研究简评.应用气象学报, 2001, 12(1):102-112. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010114&flag=1
    [9]
    Yang K, Wang J.A temperature prediction-correction method for estimating surface soil heat flux from soil temperature and moisture data.Science in China (Earth Science), 2008, 51(5):721-729. doi:  10.1007/s11430-008-0036-1
    [10]
    梁晓, 郑小谷, 戴永久, 等.EnKF中误差协方差优化方法及在资料同化中应用.应用气象学报, 2014, 25(4):397-405. doi:  10.11898/1001-7313.20140402
    [11]
    吴统文, 宋连春, 刘向文, 等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报, 2013, 24(5):533-543. doi:  10.11898/1001-7313.20130503
    [12]
    李巧萍, 丁一汇, 董文杰.土壤湿度异常对区域短期气候影响的数值模拟试验.应用气象学报, 2007, 18(1):1-11. doi:  10.11898/1001-7313.20070102
    [13]
    孙丞虎, 李维京, 张祖强, 等.淮河流域土壤湿度异常的时空分布特征及其与气候异常关系的初步研究.应用气象学报, 2005, 16(2):129-138. doi:  10.11898/1001-7313.20050217
    [14]
    Bai P, Liu X, Yang T, et al.Evaluation of streamflow simulation results of land surface models in GLDAS on the Tibetan Plateau.Journal of Geophysical Research:Atmospheres, 2016, 121(20):121-135.
    [15]
    Zou L, Gao W, Xu X, et al.A 3DVAR land data assimilation scheme Part 2:Test with ECMWF ERA-40.Proc Spie, 2006, 7(1):6298-6310.
    [16]
    Rodell M, Houser P R, Jambor U E A, et al.The Global Land Data Assimilation System.BAMS, 2004, 85(1):381-394.
    [17]
    Xia Y, Ek M, Wei H, et al.Comparative Analysis of Relationships Between Nldas-2 Forcings and Model Outputs.Hydrol Process, 2012, 26(3):467-474. doi:  10.1002/hyp.v26.3
    [18]
    Shi C, Jiang L, Zhang T, et al.Status and Plans of CMA Land Data Assimilation System (CLDAS) Project.Egu General Assembly, 2014.
    [19]
    师春香, 谢正辉, 钱辉, 等.基于卫星遥感资料的中国区域土壤湿度EnKF数据同化.中国科学 (地球科学), 2011, 41(3):375-385. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201103009.htm
    [20]
    Dickinson R E.Biosphere/atmosphere transfer scheme (BATS) for the NCAR community climate model.Technical Report, 1986, 9(2):3-13.
    [21]
    Bonan G B.Sensitivity of a GCM simulation to inclusion of inland water surfaces.J Clim, 1995, 8(11):2691-2704. doi:  10.1175/1520-0442(1995)008<2691:SOAGST>2.0.CO;2
    [22]
    Dai Yongjiu, Dickinson R E, Wang Yingping.A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance.J Clim, 2004, 17(12):2281-2299. doi:  10.1175/1520-0442(2004)017<2281:ATMFCT>2.0.CO;2
    [23]
    Dickinson R E, Oleson K W, Bonan G, et al.The community land model and its climate statistics as a component of the community climate system model.J Clim, 2006, 19(19):2302-2324.
    [24]
    Xie Y, Koch S, McGinley J, et al.A space-time multiscale analysis system:A sequential variational analysis approach.Mon Wea Rev, 2011, 139(4):1224-1240. doi:  10.1175/2010MWR3338.1
    [25]
    张涛, 苗春生, 王新.LAPS与STMAS地面气温融合效果对比试验.高原气象, 2014, 33(3):743-752. doi:  10.7522/j.issn.1000-0534.2013.00046
    [26]
    宇婧婧, 沈艳, 潘旸, 等.概率密度匹配法对中国区域卫星降水资料的改进.应用气象学报, 2013, 24(5):544-553. doi:  10.11898/1001-7313.20130504
    [27]
    潘旸, 沈艳, 宇婧婧, 等.基于最优插值方法分析的中国区域地面观测与卫星反演逐时降水融合试验.气象学报, 2012, 70(6):1381-1389. doi:  10.11676/qxxb2012.116
    [28]
    沈艳, 潘旸, 宇婧婧, 等.中国区域小时降水量融合产品的质量评估.大气科学学报, 2013, 36(1):37-46. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201301007.htm
    [29]
    Stamnes M, Schiavo G, Stenbeck G, et al.ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles.Proceedings of the National Academy of Sciences, 1998, 95(23):13676-13680. doi:  10.1073/pnas.95.23.13676
    [30]
    Jia B, Xie Z, Dai A, et al.Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia:Spatial and seasonal variations.Journal of Geophysical Research:Atmospheres, 2013, 118(9):3431-3446. doi:  10.1002/jgrd.50353
    [31]
    龚伟伟, 师春香, 张涛, 等.中国区域多种数值模式资料的地面气象要素评估.气候与环境研究, 2015, 20(1):53-62. doi:  10.3878/j.issn.1006-9585.2014.13153
    [32]
    张志富, 任芝花, 张强, 等.自动站小时气温数据质量控制系统研究.气象与环境学报, 2013, 29(4):64-70. http://www.cnki.com.cn/Article/CJFDTOTAL-LNQX201304010.htm
    [33]
    Yang K, Qin J, Zhao L, et al.A multi-scale soil moisture and freeze-thaw monitoring network on the third pole.Bull Amer Meteor Soc, 2013, 94(12):1907-1916. doi:  10.1175/BAMS-D-12-00203.1
    [34]
    Liu L, Zhang R, Zuo Z, et al.Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China.J Geophys Res, 2014, 119(1):54-64.
    [35]
    庄媛, 师春香, 沈润平, 等.中国区域多种微波遥感土壤湿度产品质量评估.气象科学, 2015, 35(3):289-296. doi:  10.3969/2014jms.0054
    [36]
    Xia Y, Ek M B, Wu Y, et al.Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture.Part Ⅰ:Comparison and Analysis.Journal of Hydrometeorology, 2015, 16(1):1962-1980.
    [37]
    Taylor K E.Summarizing multiple aspects of model performance in a single diagram.Journal of Geophysical Research:Atmospheres, 2001, 106(D7):7183-7192. doi:  10.1029/2000JD900719
    [38]
    Shangguan W, Dai Y J, Liu B Y, et al.A China dataset of soil properties for land surface modeling.Journal of Advances in Modeling Earth Systems, 2013, 5(1):1-13. doi:  10.1029/2012MS000191
    [39]
    冉有华, 李新, 卢玲.四种常用的全球1 km土地覆盖数据中国区域的精度评价.冰川冻土, 2009, 31(3):490-500. http://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200903011.htm
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(2)

    Article views (3808) PDF downloads(785) Cited by()
    • Received : 2016-10-23
    • Accepted : 2017-02-22
    • Published : 2017-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint