Feng Jianing, Duan Yihong, Xu Jing, et al. Improving the simulation of typhoon Mujigae (2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. DOI:  10.11898/1001-7313.20170402.
Citation: Feng Jianing, Duan Yihong, Xu Jing, et al. Improving the simulation of typhoon Mujigae (2015) based on radar data assimilation. J Appl Meteor Sci, 2017, 28(4): 399-413. DOI:  10.11898/1001-7313.20170402.

Improving the Simulation of Typhoon Mujigae (2015) Based on Radar Data Assimilation

DOI: 10.11898/1001-7313.20170402
  • Received Date: 2017-03-10
  • Rev Recd Date: 2017-05-19
  • Publish Date: 2017-07-31
  • Typhoon intensity and precise structure are hardly to predict by all kinds of numerical model, and one key problem is the lack of precise initialization data. Through a WRF-based ensemble Kalman filtering (EnKF) data assimilation system, impacts of assimilating China's coastal Doppler radar velocity observations for track, intensity and structure of Typhoon Mujigae (2015) is examined.Furthermore, assimilating sensitivity of observations in relative regions are also explored. The experimental results show that mean track error and max track error is reduced by 15 km and 38 km, respectively. The track error of the EnKF analysis becomes smaller with more cycles of assimilating data, and so do the deterministic forecast driven by EnKF analysis field. Through data assimilation, offshore enhancement process in Mujigae is well simulated. Intensity error in both EnKF analysis and prediction are smaller than 25 hPa after assimilation. After 9 h cycling radar velocity data assimilation, the deterministic forecast shows the typhoon continue to strengthen before landfall, and the typhoon eye is contracted much after data assimilation. The diameter of typhoon eye is reduced by about 70 km, and the eye wall convection asymmetric structure is closer to observation.The sensitivity of radar observation assimilation is tested by different radial distance area. Numerical sensitivity experiments show that radar observations within 100 km of the typhoon's inner core play a dominate role to assimilation results. Typhoon track, intensity and structure are all closer to observation by assimilating radar data within 100 km from typhoon center (about 20% of total observation) showing equivalent effects as assimilating all data. Typhoon is somewhat modified by cycling assimilating observations within 100-200 km from typhoon center. There is no obvious enhancement in typhoon track, intensity and structure after assimilating data 200 km away from inner core. Therefore, radar observation located in typhoon kernel is the key to determine assimilation effects. Because of less data assimilated, the strategy of only assimilating inner core radar data can reduce computing time to 1/3 of all data with somewhat same assimilation result. Efficiency of radar assimilation can be much improved by this radar assimilating strategy, and it can give reference to official typhoon real-time data assimilation and prediction work.
  • Fig. 1  Experiment design of modeling (a)location of Haikou Doppler radar(site number is Z9898) and its radial velocity coverage with best track of Typhoon Mujigae(2015)(the dashed line denotes the period during which radar data is assimilated), (b)domain configuration of model

    Fig. 2  Scattering gram of super observations(SO) in assimilation experiments (a)total SO, (b)SO within 100 km from the typhoon center, (c)SO in 100-200 km from the typhoon center, (d)SO out of 200 km from the typhoon center

    Fig. 3  The EnKF analysis and deterministic forecast (DF_03T22, DF_04T00, DF_04T02, DF_04T04) of Typhoon Mujigae(2015)

    Fig. 4  Minimum sea-level pressure of Typhoon Mujigae(2015) by EnKF analysis(a) and forecast(b) from 3 Oct to 5 Oct in 2015

    Fig. 5  The composite radar reflectivity of Typhoon Mujigae(2015) from 3 Oct to 4 Oct in 2015

    Fig. 6  Analysis increments (a)300 hPa potential temperature increment(the shaded) and wind increment at 2000 UTC 3 Oct 2015, (b)300 hPa potential temperature increment(the shaded) and wind increment at 0400 UTC 4 Oct 2015, (c)850 hPa vorticity increment at 2000 UTC 3 Oct 2015, (d)850 hPa vorticity increment at 0400 UTC 4 Oct 2015 (black and green dots denote typhoon location of observation and analysis)

    Fig. 7  Box-and-whisker plot of radar SO in assimilation experiments (a)total SO, (b)SO within 100 km from the typhoon center, (c)SO in 100-200 km from the typhoon center, (d)SO out of 200 km from the typhoon center(the black curve denotes the maximum wind speed from JTWC best track)

    Fig. 8  Minimum sea surface level pressure(a), track(b), track error(c) and track bias to EnKF(d) of Typhoon Mujigae(2015) in sensitivie experiments

    Fig. 9  The composite radar reflectivity of Typhoon Mujigae(2015) in sensitive experiments

    Fig. 10  The number of SO in sensitivie expriments from 3 Oct to 4 Oct in 2015

  • [1]
    Rappaport E N, Franklin J L, Avila L A, et al.Advances and challenges at the National Hurricane Center.Wea Forecasting, 1990, 24:395-419, DOI: 10.1175/2008WAF2222128.1.
    [2]
    Huang C Y, Wong C S, Yeh T C.Extreme rainfall mechanisms exhibited by Typhoon Morakot (2009).Terrestrial, Atmospheric and Oceanic Sciences, 2011, 22:613-632. doi:  10.3319/TAO.2011.07.01.01(TM)
    [3]
    Black M L, Gamache J F, Marks Jr F D, et al.Eastern Pacific Hurricanes Jimena of 1991 and Olivia of 1994:The effect of vertical shear on structure and intensity.Mon Wea Rev, 2002, 130(9):2291-2312. doi:  10.1175/1520-0493(2002)130<2291:EPHJOA>2.0.CO;2
    [4]
    Liang J, Wu L, Ge X, et al.Monsoonal influence on typhoon Morakot (2009).Part Ⅱ:Numerical study.J Atmos Sci, 2011, 68(10):2222-2235. doi:  10.1175/2011JAS3731.1
    [5]
    Lorenc A C.Analysis methods for numerical weather prediction.Quart J Royal Meteor Soc, 1986, 112(474):1177-1194. doi:  10.1002/(ISSN)1477-870X
    [6]
    Rabier F, Järvinen H, Klinker E, et al.The ECMWF operational implementation of four-dimensional variational assimilation.Ⅰ:Experimental results with simplified physics.Quart J Royal Meteor Soc, 2000, 126(564):1143-1170. doi:  10.1002/qj.49712656415
    [7]
    王曼, 李华宏, 段旭, 等.WRF模式三维变分中背景误差协方差估计.应用气象学报, 2011, 22(4):482-492. doi:  10.11898/1001-7313.20110411
    [8]
    杨艳蓉, 李柏, 张沛源.多普勒雷达资料四维变分同化.应用气象学报, 2004, 15(1):95-110. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040113&flag=1
    [9]
    李华宏, 薛纪善, 王曼, 等.多普勒雷达风廓线的反演及变分同化试验.应用气象学报, 2007, 18(1):50-57. doi:  10.11898/1001-7313.20070110
    [10]
    张新忠, 陈军明, 赵平.多普勒天气雷达资料同化对江淮暴雨模拟的影响.应用气象学报, 2015, 26(5):555-566. doi:  10.11898/1001-7313.20150505
    [11]
    施丽娟, 许小峰, 李柏, 等.雷达资料在登陆台风"桑美"数值模拟中的应用.应用气象学报, 2009, 20(3):257-266. doi:  10.11898/1001-7313.20090301
    [12]
    任强, 董佩明, 薛纪善.台风数值预报中受云影响微波卫星资料的同化试验.应用气象学报, 2009, 20(2):138-146. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20090202&flag=1
    [13]
    高郁东, 万其林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(1):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
    [14]
    Mark B, Ron G, Oscar A, et al.Seamless Prediction of the Earth System:From Minutes to Months.Chapter 3.Data Assimilation Methods and Applications.2014.
    [15]
    Evensen G.The ensemble Kalman filter:Theoretical formulation and practical implementation.Ocean Dynamics, 2003, 53(4):343-367. doi:  10.1007/s10236-003-0036-9
    [16]
    梁晓, 郑小谷, 戴永久, 等.EnKF中误差协方差优化方法及在资料同化中应用.应用气象学报, 2014, 25(4):397-405. doi:  10.11898/1001-7313.20140402
    [17]
    Whitaker J S, Hamill T M, Wei X, et al.Ensemble data assimilation with the NCEP global forecast system.Mon Wea Rev, 2005, 136(2):463-482. http://www.academia.edu/6232865/Ensemble_Data_Assimilation_with_the_NCEP_Global_Forecast_System
    [18]
    Zhang F Q, Weng Y H, Sippel J A, et al.Cloud resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter.Mon Wea Rev, 2009, 137:2105-2125, DOI: 10.1175/2009MWR2645.1.
    [19]
    Wang M, Xue M, Zhao K, et al.Assimilation of T-TREC-retrieved winds from single-Doppler radar with an ensemble Kalman filter for the forecast of Typhoon Jangmi (2008).Mon Wea Rev, 2014, 142(5):1892-1907. doi:  10.1175/MWR-D-13-00387.1
    [20]
    Yue J, Meng Z Y, Yu C K, et al.Impact of coastal radar observability on the forecast of the track and rainfall of Typhoon Morakot (2009) using WRF-based ensemble Kalman filter data assimilation.Adv Atmos Sci, 2017, 34(1):66-78, DOI: 10.1007/s00376-016-6028-8.
    [21]
    Houtekamer P L, Zhang F Q.Review of the ensemble Kalman filter for atmospheric data assimilation.Mon Wea Rev, 2016, 144(12):4489-4532. doi:  10.1175/MWR-D-15-0440.1
    [22]
    Liu Z, Schwartz C S, Snyder C, et al.Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter.Mon Wea Rev, 2012, 140:4017-4034, DOI:10.1175/ MWR-D-12-00083.1.
    [23]
    Xu D M, Liu Z Q, Huang X Y et al.Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones.Meteor.Atmos Phys, 2013, 122:1-18, DOI: 10.1007/s00703-013-0276-2.
    [24]
    Aberson S D, Black M L, Black R A, et al.Thirty years of tropical cyclone research with the NOAA P-3 aircraft.Bull Amer Meteor Soc, 2006, 87:1039-1055. doi:  10.1175/BAMS-87-8-1039
    [25]
    Weng Y H, Zhang M, Zhang F Q.Advanced data assimilation for cloud-resolving hurricane initialization and prediction.Computing in Science & Engineering, 2011, 13(1):40-49. http://ams.confex.com/ams/28Hurricanes/webprogram/Paper138595.html
    [26]
    Weng Y H, Zhang F Q.Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005).Mon Wea Rev, 2012, 140:841-859, DOI: 10.1175/2011MWR3602.1.
    [27]
    Dong J L, Xue M.Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008).Quart J Royal Meteor Soc, 2013, 139:467-487. doi:  10.1002/qj.1970
    [28]
    Zhu L, Wan Q, Shen X, et al.Prediction and predictability of high-impact Western Pacific landfalling Tropical Cyclone Vicente (2012) through convection-permitting ensemble assimilation of doppler radar velocity.Mon Wea Rev, 2016, 144(1):21-43. doi:  10.1175/MWR-D-14-00403.1
    [29]
    Xie B, Zhang F, Zhang Q, et al.Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation.Mon Wea Rev, 2013, 141(5):1437-1453. doi:  10.1175/MWR-D-12-00188.1
    [30]
    Zhao K, Li X F, Xue M, et al.Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall.J Geophys Res, 2012, 117:D06108, DOI: 10.1029/2011JD017109.
    [31]
    Yue J, Meng Z, Yu C, et al.Impact of assimilating Taiwan coastal radar radial velocity on the forecast of Typhoon Morakot (2009) in Southeastern China using a WRF-based EnKF.Science China Earth Sciences, 2016, 59(1):1-13. doi:  10.1007/s11430-015-0259-y
    [32]
    Zhao K, Xue M, Lee W C.Assimilation of GBVTD-retrieved winds from single-Doppler radar for short-term forecasting of super typhoon Saomai (0608) at landfall.Quart J R Met Soc, 2012, 138:1055-1071. doi:  10.1002/qj.975
    [33]
    肖艳姣, 万玉发, 王志斌.多普勒天气雷达双PRF径向速度资料质量控制.高原气象, 2016, 35(4):1112-1122. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201604024.htm
    [34]
    肖艳娇, 万玉发, 王珏, 等.一种自动多普勒雷达速度退模糊算法研究.高原气象, 2012, 31(4):1119-1128. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201204028.htm
    [35]
    Zhang F Q, Meng Z Y, Aksoy A.Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation.Part Ⅰ:Perfect model experiments.Mon Wea Rev, 2006, 134(2):722-736. doi:  10.1175/MWR3101.1
    [36]
    Meng Z Y, Zhang F Q.Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation.Part Ⅱ:Imperfect model experiments.Mon Wea Rev, 2007, 135(4):1403-1423. doi:  10.1175/MWR3352.1
    [37]
    Meng Z Y, Zhang F Q.Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation.Part Ⅲ:Comparison with 3DVAR in a real-data case study.Mon Wea Rev, 2008, 136:522-540. doi:  10.1175/2007MWR2106.1
    [38]
    Meng Z Y, Zhang F Q.Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation.Part Ⅳ:Comparison with 3DVAR in a month-long experiment.Mon Wea Rev, 2008, 136:3671-3682. doi:  10.1175/2008MWR2270.1
    [39]
    Zhang F Q, Weng Y H, Gamache G F, et al.Performance of convection-permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne doppler radar observations.Geophys Res Lett, 2011, 38, L15810, DOI: 10.1029/2011GL048469.
    [40]
    Zhang F Q, Weng Y H.Predicting hurricane intensity and associated hazards:A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations.Bull Amer Meteor Soc, 2015, 96:25-33, DOI: 10.1175/BAMS-D-13-00231.1.
  • 加载中
  • -->

Catalog

    Figures(10)

    Article views (3625) PDF downloads(533) Cited by()
    • Received : 2017-03-10
    • Accepted : 2017-05-19
    • Published : 2017-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint