Liu Ningwei, Ma Jianzhong. Seasonal relationships between tropospheric ozone and its precursors over East Asia. J Appl Meteor Sci, 2017, 28(4): 427-435. DOI:  10.11898/1001-7313.20170404.
Citation: Liu Ningwei, Ma Jianzhong. Seasonal relationships between tropospheric ozone and its precursors over East Asia. J Appl Meteor Sci, 2017, 28(4): 427-435. DOI:  10.11898/1001-7313.20170404.

Seasonal Relationships Between Tropospheric Ozone and Its Precursors over East Asia

DOI: 10.11898/1001-7313.20170404
  • Received Date: 2017-02-20
  • Rev Recd Date: 2017-06-01
  • Publish Date: 2017-07-31
  • Satellite data of ozone with its various precursors and global reanalysis products of vapor throughout 2010 and 2012 are used to evaluate spatial-temporal variations of tropospheric ozone and its various precursors over East Asia with their correlations over East China. Northern and southern regions of East China are treated separately in order to address Asian Summer Monsoon's different influences on these two regions. It shows that the tropospheric column densities of NO2 and CO are high in winter, while low in summer. The tropospheric column density of ozone reaches its maximum and minimum in summer and winter, respectively. Correlations between ozone and NO2 varies similarly with seasons change, appearing positive in summer and autumn, while negative in winter and spring over both regions. There are significantly positive correlations between ozone and NO2 over both northern and southern regions during summer, which demonstrates due to the strong sunlight, NO2 appears short life-time and declined densities, thus the NOx-involved photochemical cycles produce ozone actively in summer. The negative correlations during winter result from the depression of ozone photochemical cycles due to long life-time and high densities of NO2 over most regions, especially in the northern region with much more heating emissions, leading to ozone depletion by NO. Owing to the transport of polluted air masses to the downwind directions, positive correlations between ozone and CO reach the maximum in summer and autumn over the northern region and summer over the southern region. There are slightly negative correlations between ozone and CO over the northern region in winter and over the southern region in summer, because CO reaches maximum companioned with the enhancement of NO that has the titration effect to deplete ozone. In addition, stratospheric intrusion might also cause inverse correlations between ozone and CO. In most time over northern and southern regions, correlations between ozone and vapor appear highly positive, while they appear highly negative in summer over the southern region and in winter over the northern region. Although southwesterly vapor is usually companioned by pollutant transport and photochemical reaction increasing, air masses from the sea bring sufficient vapor and little ozone in summer over the southern region, and vapor in clean marine air masses may deplete ozone as well. The inverse tracing relationships between ozone and vapor possibly result from stable weather condition variations. In both regions, correlations become more significant under slightly pollution conditions, however, they are insignificant in the severely polluted and background regions, indicating that due to enhanced NO, ozone is depleted through titration effects over severely polluted regions, whereas ozone elevates with the weaker NO titration over the downwind slightly polluted regions.
  • Fig. 1  Seasonal variations of tropospheric NO2 column densities over East Asia

    (a)spring, (b)summer, (c)autumn, (d)winter

    Fig. 2  Seasonal variations of tropospheric CO column densities over East Asia

    (a)spring, (b)summer, (c)autumn, (d)winter

    Fig. 3  Seasonal variations of tropospheric ozone column densities over East Asia

    (a)spring, (b)summer, (c)autumn, (d)winter

    Fig. 4  Scattering plots between ozone and CO based on different NO2 thresholds over the northern region in different seasons

    (a)spring, (b)summer, (c)autumn, (d)winter

    Fig. 5  Scattering plots between ozone and CO based on different NO2 thresholds over the southern region in different seasons

    (a)spring, (b)summer, (c)autumn, (d)winter

    Table  1  Correlation coefficients of ozone with NO2, CO and vapour

    区域季节O3与NO2O3与COO3与水汽
    北部
    (N=1953)
    -0.045*0.160**0.322**
    0.489**0.453**0.510**
    0.086**0.446**0.633**
    -0.245**-0.062**-0.356**
    南部
    (N=1449)
    -0.085**0.066*0.475**
    0.550**0.500**-0.318**
    0.052*0.216**0.226**
    -0.104**0.177**0.253**
    注:N为总样本量,*表示达到0.05显著性水平,**表示达到0.01显著性水平。
    DownLoad: Download CSV
  • [1]
    Weinstock B, Niki H.Carbon monoxide balance in nature.Science, 1972, 176(4032):290-292. doi:  10.1126/science.176.4032.290
    [2]
    Wofsy S C, McConnell J C, McElroy M B.Atmospheric CH4, CO, and CO2.J Geophys Res, 1972, 77(24):4477-4493. doi:  10.1029/JC077i024p04477
    [3]
    IPCC.Intergovernmental Panel on Climate Change.2007.
    [4]
    Heck W W, Taylor O, Adams R, et al.Assessment of crop loss from ozone.J Air Pollut Control Ass, 1982, 32(4):353-361. doi:  10.1080/00022470.1982.10465408
    [5]
    Lee D S, Holland M R, Falla N.The potential impact of ozone on materials in the UK.Atmos Environ, 1996, 30(7):1053-1065. doi:  10.1016/1352-2310(95)00407-6
    [6]
    Shindell D, Kuylenstierna J C, Vignati E, et al.Simultaneously mitigating near-term climate change and improving human health and food security.Science, 2012, 335(6065):183-189. doi:  10.1126/science.1210026
    [7]
    Levy H, Mahlman J, Moxim W, et al.Tropospheric ozone:The role of transport.J Geophys Res, 1985, 90(D2):3753-3772. doi:  10.1029/JD090iD02p03753
    [8]
    Crutzen P J.Photochemical reactions initiated by and influencing ozone in unpolluted tropospheric air.Tellus A, 1974, 26(1-2):47-57. doi:  10.1111/tus.1974.26.issue-1-2
    [9]
    Chameides W L, Walker J C.A time-dependent photochemical model for ozone near the ground.J Geophys Res, 1976, 81(3):413-420. doi:  10.1029/JC081i003p00413
    [10]
    Fishman J, Solomon S, Crutzen P J.Observational and theoretical evidence in support of a significant in-situ photochemical source of tropospheric ozone.Tellus A, 1979, 31(5):432-446. doi:  10.1111/tus.1979.31.issue-5
    [11]
    Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics:From Air Pollution to Climate Change.John Wiley & Sons, 2006. http://www.wiley.com/WileyCDA/WileyTitle/productCd-1118947401.html
    [12]
    Monks P S, Archibald A T, Colette A, et al.Tropospheric ozone and its precursors from the urban to the globalscale from air quality to short-lived climate forcer.Atmos Chem Phys, 2014, 15:8889-8973. http://www.research.lancs.ac.uk/portal/en/publications/-(d1dc2bb3-13e8-4cf5-a4ec-1eac91f25f7b).html
    [13]
    DingA J, Fu C B, Yang X Q, et al.Ozone and fine particle in the western Yangtze River Delta:An overview of 1 yr data at the SORPES station.Atmos Chem Phys, 2013, 13(11):5813-5830. doi:  10.5194/acp-13-5813-2013
    [14]
    He Y, Uno I, Wang Z, et al.Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region.Atmos Chem Phys, 2008, 8(24):7543-7555. doi:  10.5194/acp-8-7543-2008
    [15]
    Safieddine S, Boynard A, Hao N, et al.Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations.Atmos Chem Phys, 2016, 16(16):10489-10500. doi:  10.5194/acp-16-10489-2016
    [16]
    Zhao C, Wang Y, Yang Q, et al.Impact of East Asian summer monsoon on the air quality over China:View from space.J Geophys Res, 2010, 115(D9):1063. doi:  10.1029/2009JD012745/abstract
    [17]
    Yang Y, Liao H, Li J.Impacts of the East Asian summer monsoon on interannual variations of summertime surface-layer ozone concentrations over China.Atmos Chem Phys, 2014, 14(13):6867-6879. doi:  10.5194/acp-14-6867-2014
    [18]
    朱彬.东亚太平洋地区近地面臭氧的季节和年际变化特征及其与东亚季风的关系.大气科学学报, 2012, 35(5):513-523. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201205004.htm
    [19]
    Ma J Z, Liu H L, Hauglustaine D.Summertime tropospheric ozone over China simulated with a regional chemical transport model 1.Model description and evaluation.J Geophys Res, 2002, 107(D22):ACH 27-1-ACH 27-13. https://www.researchgate.net/publication/248801926_Summertime_tropospheric_ozone_over_China_simulated_with_a_regional_chemical_transport_model_1_Model_description?_sg=VhgQyCg01oE_duIsPNpKcDr7IwpyXg0s2P7Nfllzh3GLYYLQUcDbw7k-Z-OksFCxuAQNY4vNJrkCQUulSi6VEA
    [20]
    Ma J Z, Zhou X J, Hauglustaine D.Summertime tropospheric ozone over China simulated with a regional chemical transport model 2.Source contributions and budget.J Geophys Res, 2002, 107(D22):ACH 2-1-ACH 2-11. https://www.researchgate.net/publication/248802489_Summertime_tropospheric_ozone_over_China_simulated_with_a_regional_chemical_transport_model_2_Source_contributions_and_budget
    [21]
    徐晓斌, 林伟立.卫星观测的中国地区1979—2005年对流层臭氧变化趋势.气候变化研究进展, 2010, 6(2):100-105. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201002007.htm
    [22]
    David L M, Nair P R.Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site:Association with mesoscale and synoptic meteorological conditions.J Geophys Res, 2011, 116(D10):2-3. http://www.researchgate.net/publication/228480619_Diurnal_and_seasonal_variability_of_surface_ozone_and_NOx_at_a_tropical_coastal_site_Association_with_mesoscale_and_synoptic_meteorological_conditions
    [23]
    Worden J, Jones D, Liu J, et al.Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon.J Geophys Res, 2009, 114(D13):267-275. https://www.researchgate.net/profile/Jane_Liu4/publication/255652259_Observed_Vertical_Distribution_of_Tropospheric_Ozone/links/02e7e536d62fa7586f000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
    [24]
    Ziemke J, Chandra S, Duncan B, et al.Tropospheric ozone determined from Aura OMI and MLS:Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model.J Geophys Res, 2006, 111(D19), DOI: 10.1029/2006JD007089.1.
    [25]
    李莹, 赵春生, 方圆圆, 等.利用卫星资料分析对流层臭氧柱总量分布特征及其可能的原因.应用气象学报, 2007, 18(2):181-186. doi:  10.11898/1001-7313.20070231
    [26]
    赵春生, 方圆圆, 汤洁, 等.MOPITT观测的CO分布规律及与瓦里关地面观测结果的比较.应用气象学报, 2007, 18(1):36-41. doi:  10.11898/1001-7313.20070107
    [27]
    白文广, 张鹏, 张兴赢, 等.用卫星资料分析中国区域CO柱总量时空分布特征.应用气象学报, 2010, 21(4):475-483. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20100411&flag=1
    [28]
    唐孝炎, 张远航, 邵敏.大气环境化学(第二版).北京:高等教育出版社, 2006.
    [29]
    马岚, 吴晓京, 江吉喜, 等.2001年夏季风活动与我国南方暴雨某些特征的分析.应用气象学报, 2001, 14(8):445-451. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030455&flag=1
    [30]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi:  10.11898/1001-7313.20060609
    [31]
    王启, 丁一汇, 江滢.亚洲季风活动及其与中国大陆降水关系.应用气象学报, 1998, 9(增刊Ⅰ):84-89. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX8S1.010.htm
    [32]
    陆尔, 丁一汇.1991年江淮持续性特大暴雨的夏季风活动分析.应用气象学报, 1997, 8(3):316-324. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19970345&flag=1
    [33]
    洪盛茂, 焦荔, 何曦, 等.杭州市区大气臭氧浓度变化及气象要素影响.应用气象学报, 2009, 20(5):602-611. doi:  10.11898/1001-7313.20090512
    [34]
    Fishman J, Seiler W.Correlative nature of ozone and carbon monoxide in the troposphere:Implications for the tropospheric ozone budget.J Geophys Res, 1983, 88(C6):3662-3670. doi:  10.1029/JC088iC06p03662
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(1)

    Article views (3360) PDF downloads(322) Cited by()
    • Received : 2017-02-20
    • Accepted : 2017-06-01
    • Published : 2017-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint