Sun Hao, Liu Liping, Zheng Jiafeng. Comparisons of Doppler spectral density data by different bands pointing vertically radars. J Appl Meteor Sci, 2017, 28(4): 447-457. DOI:  10.11898/1001-7313.20170406.
Citation: Sun Hao, Liu Liping, Zheng Jiafeng. Comparisons of Doppler spectral density data by different bands pointing vertically radars. J Appl Meteor Sci, 2017, 28(4): 447-457. DOI:  10.11898/1001-7313.20170406.

Comparisons of Doppler Spectral Density Data by Different Bands Pointing Vertically Radars

DOI: 10.11898/1001-7313.20170406
  • Received Date: 2016-12-13
  • Rev Recd Date: 2017-05-31
  • Publish Date: 2017-07-31
  • The attenuation of the radar echo has always been a difficult problem in radar detections. Results corrected by the common methods have some differences with the real detecting value. Due to the richness of the micro physical and dynamic information by the power spectrum data of vertical detecting radars, the mechanism of attenuation could be investigated in the power spectrum layer. And then, a direction of the improvement of attenuation correction could be found by power spectrum data.Comparative research is carried out using the power spectrum data by Ka-band millimeter-wave radar, C-band frequency-modulated continuous-wave radar and Ku-band micro rain radar at Yangjiang of Guangdong during May-June in 2014 and Longmen of Guangdong during April-May in 2016. The power spectrum shapes by three radars are almost consistent, especially for the peak velocity and the first atmospheric signal, indicating data of three radars are reliable. In the detection of big particle size precipitation, the radar echo is affected by Mie scattering effects, especially shorter wavelength echoes. The reflect of Mie scattering effects on the power spectrum is a rapid decline of echo intensity during a speed point, which shrink the tail end of the spectrum, reduce signal spectrum width and affect the intensity value. The performance of power spectrum is the overall down of spectrum, and it leads to underestimation. In convective cloud precipitation detections, results calculated by the normal empirical formula may have difference with real value. Spectrum distribution could be taken into account in such condition, and the correction methods should be improved by the power spectrum density layer.Finally, the study of the attenuation correction, especially the study in the strong precipitation process, the power spectrum data could be used. But the question how the attenuation effect the power spectrum, the study just offers a direction. It still needs to explore in the quantitative research.
  • Fig. 1  The location of Yangjiang and Longmen detection fields in Guangdong

    Fig. 2  Comparisons of 3 min averaged and corrected echo intensity spectrum data of three radars in static atmosphere at 2.0 km height

    Fig. 3  Comparsions of back scattering cross section calculated by Rayleigh scattering and Mie scattering in a increasing radius among echoes of Ka-band(a), Ku-band(b) and C-band(c) radars

    Fig. 4  Comparisons of 3 min averaged and corrected echo intensity spectrum density of three radars in different precipitation processes

    Fig. 5  Comparisons of the echo intensity spectrum of CR and CWR at the height of 2.0 km(a), 2.5 km(b), 3.0 km(c), 3.5 km(d) and 4.0 km(e) in the convective cloud precipitation process on 15 May 2016

    Table  1  Specifications of Ka-band millimeter-wave radar, C-band frequency-modulated continuous-wave radar and Ku-band micro rain radar

    指标Ka波段毫米波雷达C波段连续波雷达Ku波段微雨雷达
    雷达体制脉冲多普勒、单发双收、线性极化、全固态连续波体制脉冲多普勒、固态发射机体制
    工作频率33.44 GHz±10 MHz5530±3 MHz24.23 GHz
    探测方式垂直探测垂直探测垂直探测
    探测要素功率谱密度、回波强度、径向速度、
    速度谱宽、退偏振比
    功率谱密度、回波强度、
    径向速度、速度谱宽、回波功率
    功率谱密度、回波强度、
    雨强、液态含水量、雨滴谱
    探测范围/km0.03~15.30.03~150.1~3.1
    FFT谱点数25651264
    时间分辨率8.8~8.9 s完成3个模式扫描,每个模式约3 s3 s,6 s60 s
    高度分辨率/m3030100
    波束宽度/(°)0.32.62.0
    DownLoad: Download CSV

    Table  2  Power spectrum parameters of three radars at 2.0 km height

    个例过程类型设备回波强度/
    dBZ
    功率谱峰值
    速度/(m·s-1)
    信号谱宽度/
    (m·s-1)
    米散射临界
    速度/(m·s-1)
    临界半径/mm
    2016-05-16
    龙门
    低层积云CR-14.70.61.2
    CWR-15.20.61.3
    2014-06-09
    阳江
    层状云降水CR18.76.04.77.01.13
    MRR19.06.15.1
    CWR19.06.04.9
    2014-06-09
    阳江
    对流云降水CR24.57.05.97.11.16
    MRR24.87.16.48.11.58
    CWR25.27.06.4
    2016-05-15
    龙门
    对流云降水CR42.76.68.47.21.20
    MRR42.96.68.38.21.63
    CWR43.16.59.8
    DownLoad: Download CSV

    Table  3  Echo intensity detected by CR, CWR and corrected from CR at the height of 2.0 km, 2.5 km, 3.0 km, 3.5 km, 4.0 km in the convective cloud precipitation process on 15 May 2016

    高度/kmCR测得回波强度/dBZCR订正后回波强度/dBZCWR测得回波强度/dBZ
    2.041.643.143.1
    2.541.943.543.6
    3.042.444.044.7
    3.542.944.545.5
    4.042.544.145.7
    DownLoad: Download CSV

    Table  4  Comparisons of echo intensity differences detected by CWR and echo intensity differences of CR corrected by direction deduce method at height of 2.0-4.0 km in the convective cloud precipitation process on 15 May 2016

    高度CR订正后回波
    强度差/dBZ
    CWR测得回波
    强度差/dBZ
    2.0 km与2.5 km的差值0.40.5
    2.5 km与3.0 km的差值0.51.1
    3.0 km与3.5 km的差值0.50.8
    3.5 km与4.0 km的差值-0.40.2
    DownLoad: Download CSV
  • [1]
    程周杰, 刘宪勋, 朱亚平.双偏振雷达对一次水凝物相态演变过程的分析.应用气象学报, 2009, 20(5):594-601. doi:  10.11898/1001-7313.20090511
    [2]
    许小永, 郑国光.多普勒雷达反演技术及雷达资料在数值模式中的应用.气象, 2005, 31(3):7-11. doi:  10.7519/j.issn.1000-0526.2005.03.002
    [3]
    盛春岩, 薛德强, 雷霆, 等.雷达资料同化与提高模式水平分辨率对短时预报影响的数值对比试验.气象学报, 2006, 64(3):293-307. doi:  10.11676/qxxb2006.028
    [4]
    施丽娟, 许小峰, 李柏, 等.雷达资料在登陆台风"桑美"数值模拟中的应用.应用气象学报, 2009, 20(3):257-266. doi:  10.11898/1001-7313.20090301
    [5]
    徐广阔, 孙建华, 雷霆, 等.多普勒天气雷达资料同化对暴雨模拟的影响.应用气象学报, 2009, 20(1):36-46. doi:  10.11898/1001-7313.20090105
    [6]
    刘黎平, 宗蓉, 齐彦斌, 等.云雷达反演层状云微物理参数及其与飞机观测数据的对比.中国工程科学, 2012, 14(9):64-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201209010.htm
    [7]
    张新忠, 陈军明, 赵平.多普勒天气雷达资料同化对江淮暴雨模拟的影响.应用气象学报, 2015, 26(5):555-566. doi:  10.11898/1001-7313.20150505
    [8]
    王改利, 刘黎平, 阮征.多普勒雷达资料在暴雨临近预报中的应用.应用气象学报, 2007, 18(3):388-395. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070363&flag=1
    [9]
    陈进强, 杨连英.多普勒天气雷达在人工影响天气中的应用.气象科技, 2002, 30(2):127-128. http://www.cnki.com.cn/Article/CJFDTOTAL-NYYS201521059.htm
    [10]
    王致君, 楚荣忠.偏振雷达在人工影响天气工作中的应用潜力.高原气象, 2002, 21(6):591-598. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200206008.htm
    [11]
    Shupe M D, Kollias P, Poellot M, et al.Deriving mixed-phase cloud properties from Doppler radar spectra.Atmos Oceanic Technol, 2004, 65:1304-1322.
    [12]
    Shupe M D, Koliias P, Matrosov S Y, et al.On deriving vertical air motions from cloud radar Doppler spectra.Atmos Oceanic Technol, 2008, 25:547-557. doi:  10.1175/2007JTECHA1007.1
    [13]
    何平, 李柏, 吴蕾, 等.确定风廓线雷达功率谱噪声功率方法.应用气象学报, 2013, 24(3):297-303. doi:  10.11898/1001-7313.20130305
    [14]
    宗蓉. 毫米波雷达对云宏微观特性的探测和研究. 南京: 南京信息工程大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10300-1013340791.htm
    [15]
    陈浩君. 风廓线雷达功率谱数据的研究和应用. 南京: 南京信息工程大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015639676.htm
    [16]
    周旭辉. 风廓线雷达功率谱密度数据处理算法研究. 南京: 南京信息工程大学, 2011. http://cdmd.cnki.com.cn/article/cdmd-10300-1011155452.htm
    [17]
    Gossard E E.Measurement of cloud droplet size spectra by Doppler radar.Atmos Oceanic Technol, 1994, 11(3):712-726. doi:  10.1175/1520-0426(1994)011<0712:MOCDSS>2.0.CO;2
    [18]
    Gossard E E, Snider J B, Clothiaux E E, et a1.The potential of 8-mm radars for remotely sensing cloud drop size distributions.Atmos Oceanic Technol, 1997, 14(1):712-726. https://www.researchgate.net/publication/249604432_The_Potential_of_8-mm_Radars_for_Remotely_Sensing_Cloud_Drop_Size_Distributions
    [19]
    Rogers R R, Baumgardner D, Ethier S A, et al.Comparison of raindrop size distributions measured by radar wind profiler and by airplane.Appl Meteor, 1993, 32(4):694-699. doi:  10.1175/1520-0450(1993)032<0694:CORSDM>2.0.CO;2
    [20]
    Kollias P, Albrecht B A, Marks Jr F D.Why Mie?Accurate observations of vertical air velocities and raindrops using a cloud radar.Bull Amer Meteor Soc, 2002, 83(10):1471-1483. doi:  10.1175/BAMS-83-10-1471
    [21]
    Kollias P, Remillard J, Luke E, et al.Cloud radar Doppler spectra in drizzling stratiform clouds:1.Forward modeling and remote sensing applications.J Geophys Res, 2011, 116(D13):1016-1022. https://www.researchgate.net/profile/Pavlos_Kollias/publication/251433854_Cloud_radar_Doppler_spectra_in_drizzling_stratiform_clouds_1_Forward_modeling_and_remote_sensing_applications/links/00b4952ea84a0afeeb000000.pdf?origin=publication_detail
    [22]
    Kollias P, Szyrmer W, Remillard J, et al.Cloud radar Doppler spectra in drizzling stratiform clouds:2.Observations and microphysical modeling of drizzle evolution.J Geophys Res, 2011, 116(D13):1016-1022. https://www.researchgate.net/publication/251433861_Cloud_radar_Doppler_spectra_in_drizzling_stratiform_clouds_2_Observations_and_microphysical_modeling_of_drizzle_evolution
    [23]
    王晓蕾, 阮征, 葛润生, 等.风廓线雷达探测降水云体中雨滴谱的试验研究.高原气象, 2010, 29(2):498-505. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201002026.htm
    [24]
    刘黎平, 谢蕾, 崔哲虎.毫米波云雷达功率谱密度数据的检验和在弱降水滴谱反演中的应用研究.大气科学, 2014, 38(2):223-236. doi:  10.3878/j.issn.1006-9895.2013.12207
    [25]
    郑佳锋. Ka波段-多模式毫米波雷达功率谱数据处理方法及云内空气垂直速度反演研究. 南京: 南京信息工程大学, 2016.
    [26]
    赵小艳. 天气雷达回波衰减订正算法的研究及其应用. 南京: 南京信息工程大学, 2002. http://d.wanfangdata.com.cn/Thesis/Y429973
    [27]
    吴仁彪, 韩雁飞, 李海, 等.气象雷达衰减订正方法的研究现状与展望.中国民航大学学报, 2012, 30(3):22-27;31. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201203006.htm
    [28]
    赵恒轩, 陈钟荣, 周枫.天气雷达反射率因子的实时衰减订正.高原气象, 2003, 22(4):365-370. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200304008.htm
    [29]
    黄兴友, 樊雅文, 李峰, 等.地基35 GHz测云雷达回波强度的衰减订正研究.红外与毫米波学报, 2013, 32(4):325-330. http://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201304008.htm
    [30]
    王振会, 纪雷, 黄兴友, 等.机载W波段测云雷达回波强度衰减订正仿真研究.高原气象, 2011, 30(2):437-444. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102021.htm
    [31]
    张培昌, 杜秉玉, 戴铁丕.雷达气象学.北京:气象出版社, 2000.
    [32]
    Rogers R R.An Extension of the Z-R Relation for Doppler Radars.The 11th Weather Radar Conference AMS, 1964:14-18.
    [33]
    彭亮, 陈洪滨, 李柏.3 mm多普勒云雷达测量反演云内空气垂直速度的研究.大气科学, 2012, 36(1):1-10. http://www.dqkxqk.ac.cn/dqkx/dqkxen/ch/reader/view_abstract.aspx?file_no=20120101
    [34]
    Gunn R, Kinzer G D.The terminal velocity of fall for water droplets in stagnant air.J Meteor, 1949, 6(4):243-248. doi:  10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2
    [35]
    Rogers L.Attenuation and scattering of millimeter wavelength radiation by clouds and precipitation.Atmos Oceanic Technol, 1989, 7:464-479. doi:  10.1175/1520-0426%281990%29007%3C0464%3AAASOMW%3E2.0.CO%3B2
    [36]
    Mätzler C.MATLAB Functions for Mie Scattering and Absorption.Research Report No.2002-08, Institute of Applied Physics, University of Bern, 2002:2-10.
    [37]
    张培昌, 王振会.天气雷达回波衰减订正算法的研究(Ⅰ):理论分析.高原气象, 2001, 20(1):1-5. http://cdmd.cnki.com.cn/Article/CDMD-10300-2003063887.htm
    [38]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120104&flag=1
    [39]
    刘黎平, 郑佳锋, 阮征, 等.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果.气象学报, 2015, 73(4):635-647. doi:  10.11676/qxxb2015.041
    [40]
    曹俊武, 刘黎平, 陈晓辉, 等.3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究.应用气象学报, 2006, 17(2):192-200. doi:  10.11898/1001-7313.20060210
    [41]
    商建, 郭杨, 吴琼, 等.我国Ka频段降水测量雷达机载校飞试验结果.应用气象学报, 2011, 22(5):590-596. doi:  10.11898/1001-7313.20110510
    [42]
    吴举秀, 魏鸣, 周杰.94 GHz云雷达回波及测云能力分析.气象学报, 2014, 72(2):402-416. doi:  10.11676/qxxb2014.001
  • 加载中
  • -->

Catalog

    Figures(5)  / Tables(4)

    Article views (3511) PDF downloads(411) Cited by()
    • Received : 2016-12-13
    • Accepted : 2017-05-31
    • Published : 2017-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint