Zhong Lihua, Zeng Peng, Shi Caixia, et al. Relationship between areal rainfall and circulation characteristics in Xijiang River Basins. J Appl Meteor Sci, 2017, 28(4): 470-480. DOI:  10.11898/1001-7313.20170408.
Citation: Zhong Lihua, Zeng Peng, Shi Caixia, et al. Relationship between areal rainfall and circulation characteristics in Xijiang River Basins. J Appl Meteor Sci, 2017, 28(4): 470-480. DOI:  10.11898/1001-7313.20170408.

Relationship Between Areal Rainfall and Circulation Characteristics in Xijiang River Basins

DOI: 10.11898/1001-7313.20170408
  • Received Date: 2017-03-22
  • Rev Recd Date: 2016-01-13
  • Publish Date: 2017-07-31
  • The reanalysis grid data of daily average 850 hPa and 500 hPa geopotential height field during 1971-2015 provided by NCEP/NCAR are used for computing six daily circulation indices of Xijiang River Basins using Lamb-Jenkinson atmospheric circulation classification method. The daily circulation is divided into straight wind type, rotary type and mixed type according to the relationship between the geostrophic wind speed, wind direction and the geostrophic vorticity. The circulation frequency of precipitation weather circulation in Xijiang River Basins is researched, showing that the probability of precipitation is the greatest when the circulation is southwest wind type at 850 hPa and west wind type at 500 hPa, which is the dominant circulation for precipitation in Xijiang River Basins.The contribution rate of different types of circulation to the total areal rainfall is calculated, and types with top 3 contribution rates are called the dominant circulation pattern. It's found that for the annual total rainfall and sub basin rainfall, the cyclone type at 850 hPa and westerly type at 500 hPa has the maximum contribution in each layer. The contribution of areal rainfall is larger in the east part and smaller in the west part of Xijiang River Basins. The main configuration of south wind type at 850 hPa and anticyclone type at 500 hPa causes rainy autumn over the western sub basin.By the influence situation of the first dominant circulation configuration of season total areal rainfall contribution for strong precipitation, it shows that the probability of strong precipitation are 21.1%, 18.7% and 2.0% while the configuration are cyclone at 850 hPa and west wind type at 500 hPa in summer or spring, south wind at 850 hPa and anticyclone type at 500 hPa in autumn, southwest wind at 850 hPa and west wind type at 500 hPa in winter, respectively.Analysis on the dominant circulation configuration for season rainfall indicate that, in spring and summer it's cyclone at 850 hPa and westerly at 500 hPa, in autumn it's southerly at 850 hPa and anti-cyclone at 500 hPa, and in winter it's southwest wind at 850 hPa and westerly at 500 hPa. The corresponding probability of heavy rainfall are 21.1%, 18.7%, 4% and 2%.In the past 45 years, areal rainfall contribution rates of cyclone at 850 hPa and the west wind at 500 hPa are increasing, which has a significant positive correlation (correlation coefficients are 0.63 and 0.69), indicating that it is the dominant circulation pattern with the trend of rainy in Xijiang River Basins.
  • Fig. 1  Distribution of meteorological stations in 22 sub basins(a) and the average areal rainfall(unit: mm)(b) in Xijiang River Basins during 1971-2015

    Fig. 2  Distribution of 16 differential grid points for circulation type classification

    Fig. 3  Frequency distribution of circulation types(more than 5%) in Xijiang River Basins during 1971-2015

    Fig. 4  Annual average appearance frequency of main circulation types and the contribution rate of the total areal rainfall during 1971-2015

    Fig. 5  The contribution rate of dominant circulations for annual areal rainfall in Xijiang River Basins during 1971-2015 (a)850 hPa, (b)500 hPa

    Fig. 6  Variations of SST anomaly in equatorial central Pacific and the average circulation index with vortex at 850 hPa in Xijiang River Basins during 1971-2015

    Fig. 7  The contribution rate of dominant circulations for areal rainfall of sub basins in Xijiang River Basins during 1971-2015 (a)850 hPa, (b)500 hPa

    Fig. 8  The height of 850 hPa (unit: dagpm)(a) and 500 hPa(unit:dagpm)(b) 1 d before typical autumn rains with the average areal rainfall in Xijiang River Basins(unit:mm)(c) during 1971-2015

    Table  1  The top 3 circulations and their frequency at 850 hPa and 500 hPa in Xijiang River Basins during 1971-2015(unit:%)

    序号 850 hPa 500 hPa
    环流型 出现概率/% 环流型 出现概率/%
    1 西南风型 21.9 西风型 56.2
    2 南风型 13.5 反气旋型 15.9
    3 气旋型 13.4 反气旋配合西风型 8.0
    DownLoad: Download CSV

    Table  2  The contribution rate of areal rainfall of dominant circulation types in four seasons in Xijiang River Basins during 1971-2015

    季节 序号 850 hPa 500 hPa
    环流型 贡献率/% 环流型 贡献率/%
    1 西南风型 21.7 西风型 93.0
    2 南风型 16.4 西南风型 5.0
    3 气旋配合西南风型 11.4 反气旋配合西风型 0.6
    1 气旋型 25.1 西风型 77.8
    2 西南风型 19.7 反气旋配合西风型 7.8
    3 气旋配合西南风型 13.8 西南风型 5.3
    1 气旋型 34.8 西风型 26.1
    2 西南风型 16.0 反气旋型 15
    3 反气旋配合西南风型 13.4 反气旋配合西风型 7.2
    1 南风型 16.6 反气旋型 34.9
    2 东风型 16.3 西风型 28.6
    3 反气旋配合东风型 8.4 反气旋配合西风型 17.0
    DownLoad: Download CSV

    Table  3  The frequency of areal rainfall about the combination of the first domiant circulation type in four seasons in Xijiang River Basins during 1971-2015(unit:%)

    季节 第1主导环流型配置 大雨 暴雨 大暴雨 合计
    850 hPa西南风型与500 hPa西风型 1.1 0.8 0.1 2.0
    850 hPa气旋型与500 hPa西风型 5.3 5.3 8.1 18.7
    850 hPa气旋型与500 hPa西风型 4.5 5.2 11.4 21.1
    850 hPa南风型与500 hPa反气旋型 1.6 1.6 0.8 4.0
    DownLoad: Download CSV
  • [1]
    殷正雄.水资源及其变化的区域环境影响机制——以汉江流域中下游(湖北省内)为例.武汉:华中师范大学, 2011.
    [2]
    陈思, 高建芸, 黄丽娜, 等.华南前汛期持续性暴雨年代际变化特征及成因.应用气象学报, 2017, 28(1):86-97. doi:  10.11898/1001-7313.20170108
    [3]
    覃志年, 胡娅敏, 陈丽娟.广西夏季降水的多时间尺度特征及影响因子.应用气象学报, 2013, 24(5):565-575. doi:  10.11898/1001-7313.20130506
    [4]
    谢炯光, 纪忠萍, 谷德军, 等.广东省6月长连续暴雨过程的气候特征及成因.应用气象学报, 2012, 23(2):174-183. doi:  10.11898/1001-7313.20120206
    [5]
    马慧, 陈桢华, 毛文书, 等.华南前汛期降水异常及其环流特征分析.热带气象学报, 2009, 25(1):89-96. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200901013.htm
    [6]
    何立富, 陈涛, 孔期.华南暖区暴雨研究进展.应用气象学报, 2016, 27(5):559-569. doi:  10.11898/1001-7313.20160505
    [7]
    李维京, 张若楠, 孙丞虎, 等.中国南方旱涝年际年代际变化及成因研究进展.应用气象学报, 2016, 27(5):577-591. doi:  10.11898/1001-7313.20160507
    [8]
    李崇银.动力气候学引论, 北京:气象出版社, 2000.
    [9]
    Lamb H H.Types and spells of weather around the year in the British Isles.Quart J Roy Meteor Soc, 1950, 76:393-438. doi:  10.1002/(ISSN)1477-870X
    [10]
    Jenkinson A F, Collison F P.An Initial Climatology of Gales over the North Sea.Synoptic Climatology Branch Memorandum, 1977.
    [11]
    朱艳峰, 陈德亮, 李维京, 等.Lamb-Jenkinson环流客观分型方法及其在中国的应用.南京气象学院学报, 2007, 30(3):289-297. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200703000.htm
    [12]
    周荣卫, 何晓凤, 苗世光, 等.北京地区大气环流型及气候特征.气候变化研究进展, 2010, 6(5):338-343. http://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201005008.htm
    [13]
    郝立生, 李维京.华北区域环流型与河北气候的关系.大气科学学报, 2009, 32(5):618-626. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200905003.htm
    [14]
    马占良.青海省大气环流分型及特点分析.青海气象, 2008(2):6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-QHQX200802002.htm
    [15]
    滕华超.山东省夏季降水与大气环流型关系分析.干旱气象, 2016, 34(5):789-795. http://www.cnki.com.cn/Article/CJFDTOTAL-GSQX201605005.htm
    [16]
    贾丽伟, 李维京, 陈德亮.东北地区降水与大气环流关系.应用气象学报, 2006, 17(5):557-566. doi:  10.11898/1001-7313.20060513
    [17]
    邓伟涛, 段雯瑜, 何冬燕, 等.夏季淮河流域大气环流型在降水趋势预测中的应用.气象科学学报, 2015, 38(3):333-341. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX201503005.htm
    [18]
    段雯瑜, 邓伟涛.淮河流域大气环流型在冬季气温预测中的应用.气象与减灾研究, 2014, 37(1):6-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HXQO201401002.htm
    [19]
    覃志年, 李维京, 何慧, 等.广西6月区域性暴雨过程的延伸预测试验.高原气象, 2009, 28(3):688-693. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200903027.htm
    [20]
    钟利华, 钟仕全, 李勇, 等.广西电网流域面雨量监测、预报、报警系统.气象研究与应用, 2013, 34(3):26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-GXQX201303007.htm
    [21]
    徐晶, 林建, 姚学祥, 等.七大江河流域面雨量计算方法及应用.气象, 2001, 27(11):13-16. doi:  10.3969/j.issn.1000-0526.2001.11.003
    [22]
    王兆礼, 陈晓宏, 张灵, 等.近40年来珠江流域降水量的时空演变特征.水文, 2006, 26(6):71-75. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200606021.htm
    [23]
    黄海洪, 林开平, 高安宁, 等.广西天气预报技术与方法.北京:气象出版社, 2012.
    [24]
    李建东, 蒋国荣, 刘庭杰.东亚季风区大气季内振荡与我国东部降水以及赤道中东太平洋海温的关系研究.海洋预报, 2007, 24(2):33-38. doi:  10.11737/j.issn.1003-0239.2007.02.005
    [25]
    彭加毅, 孙照渤.赤道东太平洋海温异常对夏季东亚大气环流的影响.南京气象学院学报, 2001, 24(1):37-43. http://www.cnki.com.cn/Article/CJFDTOTAL-NJQX200101004.htm
    [26]
    李传浩, 刘宣飞, 李智, 等.华西秋雨区域性极端降水的环流特征.热带气象学报, 2015, 34(4):526-535. http://cdmd.cnki.com.cn/Article/CDMD-10300-1015639623.htm
    [27]
    鲍媛媛, 阿布力米提, 李峰, 等.2001年华西秋雨的时空分布的特点及其成因分析.应用气象学报, 2003, 14(2):215-222. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030226&flag=1
    [28]
    方建刚, 白爱娟, 陶建玲.2003年陕西秋季连阴雨降水特点及环流条件分析.应用气象学报, 2005, 16(4):509-517. doi:  10.11898/1001-7313.20050412
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(3)

    Article views (2896) PDF downloads(357) Cited by()
    • Received : 2017-03-22
    • Accepted : 2016-01-13
    • Published : 2017-07-31

    /

    DownLoad:  Full-Size Img  PowerPoint