Zhao Ping, Yuan Yi. Characteristics of a plateau vortex precipitation event on 14 July 2014. J Appl Meteor Sci, 2017, 28(5): 532-543. DOI:  10.11898/1001-7313.20170502.
Citation: Zhao Ping, Yuan Yi. Characteristics of a plateau vortex precipitation event on 14 July 2014. J Appl Meteor Sci, 2017, 28(5): 532-543. DOI:  10.11898/1001-7313.20170502.

Characteristics of a Plateau Vortex Precipitation Event on 14 July 2014

DOI: 10.11898/1001-7313.20170502
  • Received Date: 2017-05-19
  • Rev Recd Date: 2017-06-21
  • Publish Date: 2017-09-30
  • Using various radar and disdrometer datasets from the Third Tibetan Plateau Atmospheric Science Experiment, MODIS data, surface and sounding datasets, temporal and spatial variations of one rainfall event on 14 July 2014 over Naqu in the central Tibetan Plateau is analyzed, the synoptic and meso-scale atmospheric circulations, and associated cloud-rainfall microphysical characteristics are also investigated. This rainfall process includes three stages, namely, the first stage with heavy rainfall starts in the afternoon (1400 BT) and ends at 1800 BT 14 July, the peak intensity of hourly precipitation occurs during 1500-1600 BT, which reaches 2.1 mm·h-1. The second stage begins at 1900 BT, and the precipitation intensity weakens prominently compared with the first stage. The third stage is from 2200 BT 14 July to 0100 BT 15 July with a weaker precipitation intensity.Rainfall during the first stage is mainly produced by the development of a synoptic-scale plateau vortex and the formation of a meso-scale convergence line in front of the vortex circulation center. The radar echo propagates northeastward, and this stage ends with the weakening of the plateau vortex. Rainfall at night is mainly associated with the warm and moist southeasterly flow passing over the topography near Naqu, which provides favorable conditions of the atmospheric moisture, instability, and shallow dynamic elevation. With the intrusion of the low-level northeasterly flow, the radar echo generally propagates southeastward. Moreover, during the earlier stage of the first rainfall stage, the ascending motion is deep over the east of the vortex, exceeding 3 m·s-1 between 3 km and 11 km above the ground level, which indicates the remarkable development of convections. During the later stage, rainfall is mainly produced by stratiform clouds, with a higher cloud top. Rainfall at night is mainly caused by stratiform clouds. The raindrop size distribution is wider (0.3-4.9 mm) than that size of 0.3-2.1 mm in the topographic rainfall, and the wider raindrop spectrum is closely associated with the larger rainfall rate.
  • Fig. 1  Distribution of observational sites at Naqu

    Fig. 2  Distribution of accumulate precipitation over the Tibetan Plateau and time series of precipitation at Naqu from 1400 BT 14 Jul to 0100 BT 15 Jul in 2014

    (a)accumulated rainfall of rain gauge stations, (b)hourly accumulated rainfall by rain gauge, distrometer A and distrometer B at Naqu, (c)time series of 10 min accumulated rainfall by distrometer B

    Fig. 3  C-band mobile polarization radar reflectivity with an elevation angle of 2.4° at Naqu on 14 Jul 2014

    (the black square is for the position of the radar, the black triangle is for Naqu, the black circle represents detection ranges of 20 km, 40 km and 60 km)

    Fig. 4  Cross section of C-band polarization radar reflectivity from 1500 BT 14 Jul to 0000 BT 15 Jul in 2014

    (a)cross section along 31.48° N(black lines with arrows indicate the propagation direction of the radar reflectivity and the black triangle is for the longitude of Naqu), (b)cross section along 92.06°E(the black triangle is for the latitude of Naqu)

    Fig. 5  500 hPa geopotential height(the contour, unit:dagpm), vorticity(the shaded), and wind(the barb) of ERA-Interim analysis from 0200 BT 14 Jul to 0200 BT 15 Jul in 2014

    (the black pentagram is for Naqu, the black thick dashed line is for a horizontal convergence line)

    Fig. 6  Regional(30°-32°N, 88°-95°E) mean vorticity profile at Naqu on 14 Jul 2014

    Fig. 7  Time-height cross section of regional(31.4°-31.6°N, 91.95°-92.15°E) mean wind(the vector) and vertical velocity(the shaded) near Naqu from 0800 BT 14 Jul to 0200 BT 15 Jul in 2014

    Fig. 8  Cross section of vertical circulation(the vector, unit of zonal wind: m·s-1; unit of vertical velocity: 10-2 Pa·s-1) and relative humidity(the shaded) along 91.94°E at 0800 BT and 1400 BT on 14 Jul and at 0200 BT 15 Jul in 2014

    (the black pentagram is for Naqu and the black triangle is the position of rainfall near Naqu after 2000 BT 14 Jul 2014)

    Fig. 9  The raindrop diameter distribution of disdrometer B during the first stage(1447-1721 BT, blue dots), the second stage(2003-2053 BT, green dots) and the third stage(2239-2352 BT, pink dots) on 14 Jul 2014

    Fig. 10  Time-height cross section of radar observation from 1400 BT 14 Jul to 0000 BT 15 Jul in 2014

    (a)reflectivity by C-band frequency modulation continuous wave radar, (b)reflectivity by Ka-band cloud radar, (c)radial velocity by C-band frequency modulation continuous wave radar, (d)radial velocity by Ka-band cloud radar

    Fig. 11  Time series of precipitation intensity(a) and raindrop size distribution(b) by disdrometer B from 1400 BT 14 Jul to 0000 BT 15 Jul in 2014

    Table  1  Equipments, position, main parameters and temporal-resolutions of observations

    设备名称 观测仪器的位置 主要观测物理量 输出数据的时间分辨率
    C波段双线偏振雷达 31.48°N,91.90°E 反射率因子、径向速度、速度谱宽、差分反射率因子 6 min
    Ka波段毫米波云雷达 31.48°N,92.01°E 反射率因子、径向速度、速度谱宽、退偏振因子 8.8 s
    C波段调频连续波雷达 31.48°N,92.07°E 反射率因子、径向速度、速度谱宽、回波功率 3 s
    雨滴谱仪A 31.48°N,92.01°E 降水强度、32个直径档和32个速度档 1 min
    雨滴谱仪B 31.48°N,92.05°E 降水强度、32个直径档和32个速度档 1 min
    DownLoad: Download CSV
  • [1]
    叶笃正, 高由禧.青藏高原气象学.北京:科学出版社, 1979:1-275. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ703.000.htm
    [2]
    钱正安, 单扶民, 吕君宁, 等.1979年夏季青藏高原低涡的统计及低涡产生的气候因子探讨.北京:科学出版社, 1984.
    [3]
    孙国武, 陈保德.初夏青藏高原低涡发展东移的动力过程.气象科学研究院院刊, 1988(1):56-63. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX198801007.htm
    [4]
    罗四维.青藏高原及其邻近地区几类天气系统的研究.北京:气象出版社, 1992.
    [5]
    杨洋, 罗四维.夏季青藏高原低涡的能量场分析.应用气象学报, 1992, 3(2):198-205. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19920234&flag=1
    [6]
    乔全明, 张雅高.青藏高原天气学.北京:气象出版社, 1994:1-250.
    [7]
    李国平, 蒋静.一类奇异孤波解及其在高原低涡结构分析中的应用.气象学报, 2000, 58(4):447-456. doi:  10.11676/qxxb2000.047
    [8]
    郁淑华, 高文良.高原低涡移出高原的观测事实分析.气象学报, 2006, 64(3):392-399. doi:  10.11676/qxxb2006.038
    [9]
    郁淑华, 高文良, 彭骏.青藏高原低涡活动对降水影响的统计分析.高原气象, 2012, 31(3):592-604. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201203001.htm
    [10]
    何光碧, 高文良, 屠妮妮.2000-2007年夏季青藏高原低涡切变线观测事实分析.高原气象, 2009, 28(3):549-555. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200811010029.htm
    [11]
    林志强, 周振波, 假拉.高原低涡客观识别方法及其初步应用.高原气象, 2013, 32(6):1580-1588. doi:  10.7522/j.issn.1000-0534.2012.00153
    [12]
    Li L, Zhang R, Wen M, et al.Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices.Tellus A, 2014, 66:419-439. doi:  10.3402/tellusa.v66.24451
    [13]
    郁淑华, 肖玉华, 高文良.冷空气对高原低涡移出青藏高原的影响.应用气象学报, 2007, 18(6):737-747. doi:  10.11898/1001-7313.200706113
    [14]
    王鑫, 李跃清, 郁淑华, 等.青藏高原低涡活动的统计研究.高原气象, 2009, 28(1):64-71. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200901008.htm
    [15]
    黄楚惠, 李国平, 牛金龙, 等.近30年夏季移出型高原低涡的气候特征及其对我国降雨的影响.热带气象学报, 2015, 31(6):827-838. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201506011.htm
    [16]
    黄楚惠, 李国平.基于卫星观测的两例高原低涡结构的初步分析.成都信息工程学院学报, 2007, 22(4):253-259. http://www.cnki.com.cn/Article/CJFDTOTAL-CDQX200702024.htm
    [17]
    陈功, 李国平.基于WRF的高原低涡内波动特征及空心结构的初步研究.高原山地气象研究, 2010, 30(1):6-11. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201001002.htm
    [18]
    宋雯雯, 李国平.高原低涡结构特征模拟与诊断的初步研究.成都信息工程学院学报, 2010, 25(3):281-285. http://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201003012.htm
    [19]
    宋雯雯, 李国平.一次高原低涡过程的数值模拟与结构特征分析.高原气象, 2011, 30(2):267-276. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201102002.htm
    [20]
    罗四维, 何梅兰, 刘晓东.关于夏季青藏高原低涡的研究.中国科学(B辑), 1993, 23(7):778-784. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199307015.htm
    [21]
    李国平, 刘红武.地面热源强迫对青藏高原低涡作用的动力学分析.热带气象学报, 2006, 22(6):632-637. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX200606017.htm
    [22]
    田珊儒, 段安民, 王子谦, 等.地面加热与高原低涡和对流系统相互作用的一次个例研究.大气科学, 2015, 39(1):125-136. doi:  10.3878/j.issn.1006-9895.1404.13311
    [23]
    李国平, 卢会国, 黄楚惠, 等.青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响.大气科学, 2016, 40(1):131-141. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXK201601012.htm
    [24]
    江吉喜, 项续康.青藏高原夏季中尺度强对流系统的时空分布.应用气象学报, 1996, 7(4):473-478. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19960472&flag=1
    [25]
    孔期, 郑永光, 陈春艳.乌鲁木齐7·17暴雨的天气尺度与中尺度特征.应用气象学报, 2011, 22(1):12-22. doi:  10.11898/1001-7313.20110102
    [26]
    王璐思, 顾洪国, 吴沛锋.一次高原低涡切变东移引发的持续性特大暴雨过程分析.高原山地气象研究, 2015, 35(3):39-44. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX201503006.htm
    [27]
    Dee D P, Uppala S M, Simmons A J, et al.The ERA-Interim reanalysis:Configuration and performance of the data assimilation system.Quart J Royal Meteor Soc, 2011, 137:553-597. doi:  10.1002/qj.v137.656
    [28]
    仲凌志, 刘黎平, 顾松山.层状云和对流云的雷达识别及在估测雨量中的应用.高原气象, 2007, 26(3):593-602. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX200703021.htm
    [29]
    刘黎平, 郑佳锋, 阮征, 等.2014年青藏高原云和降水多种雷达综合观测试验及云特征初步分析结果.气象学报, 2015, 73(4):635-647. doi:  10.11676/qxxb2015.041
    [30]
    刘黎平, 楚荣忠, 宋新民, 等.GAME-TIBET青藏高原云和降水综合观测概况及初步结果.高原气象, 1999, 18(3):441-450. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX199903019.htm
    [31]
    Liu L, Feng J M, Chu R Z, et al.The diurnal variation of precipitation in monsoon season in the Tibetan Plateau.Adv Atmos Sci, 2002, 19:365-378. doi:  10.1007/s00376-002-0028-6
    [32]
    何彩芬, 黄旋旋, 卢晶晶.基于多普勒天气雷达产品的降雪及冻雨综合分析.应用气象学报, 2009, 20(6):767-771. doi:  10.11898/1001-7313.20090616
    [33]
    金龙, 阮征, 葛润生, 等.C-FMCW雷达对江淮降水云零度层亮带探测研究.应用气象学报, 2016, 27(3):312-322. doi:  10.11898/1001-7313.20160306
    [34]
    李思腾, 马庆舒, 高玉春, 等.毫米波云雷达与激光云高仪观测数据对比分析.气象, 2015, 41(2):212-218. doi:  10.7519/j.issn.1000-0526.2015.02.009
    [35]
    常祎, 郭学良.青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征.科学通报, 2016, 61(15):1706-1720. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201615011.htm
    [36]
    袁野, 朱士超, 李爱华.黄山雨滴下落过程滴谱变化特征.应用气象学报, 2016, 27(6):734-740. doi:  10.11898/1001-7313.20160610
    [37]
    陈磊, 陈宝君, 杨军, 等.2009-2010年梅雨锋暴雨雨滴谱特征.大气科学学报, 2013, 36(4):481-488. http://cdmd.cnki.com.cn/Article/CDMD-10300-1011155387.htm
    [38]
    Zhong L, Mu R.An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event.Journal of Geophysical Research:Atmosphere, 2015, 120, DOI: 10.1002/2014JD022686.
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (5314) PDF downloads(367) Cited by()
    • Received : 2017-05-19
    • Accepted : 2017-06-21
    • Published : 2017-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint