Zhao Linna, Liu Ying, Bao Hongjun, et al. The probabilistic flood prediction based on implementation of the schaake shuffle method over the Huaihe Basin. J Appl Meteor Sci, 2017, 28(5): 544-554. DOI:  10.11898/1001-7313.20170503.
Citation: Zhao Linna, Liu Ying, Bao Hongjun, et al. The probabilistic flood prediction based on implementation of the schaake shuffle method over the Huaihe Basin. J Appl Meteor Sci, 2017, 28(5): 544-554. DOI:  10.11898/1001-7313.20170503.

The Probabilistic Flood Prediction Based on Implementation of the Schaake Shuffle Method over the Huaihe Basin

DOI: 10.11898/1001-7313.20170503
  • Received Date: 2017-05-17
  • Rev Recd Date: 2017-06-29
  • Publish Date: 2017-09-30
  • Daily precipitation records of 19 rain gauges over the Huaihe Wangjiaba-Dapoling catchment and single-value forecasts of 24-hour cumulative precipitation of the Global Forecast System (GFS) with lead time up to 14 days from 1 January 1981 to 31 December 2003 are employed to construct a probability forecast model which can generate ensemble forecast based on conditional meta-Gaussian distribution. Several single-value forecasts could be computed by this model using forecasts of the GFS for daily mean areal precipitation (MAP) and cumulative MAP for each lead time (1-14 days) over 3 sub-catchments in the Huaihe Basin. Then a method is implemented to reorder the ensemble output to recover the space-time variability in precipitation, namely Schaake shuffle method. Ensembles are then reordered to match the original order of the selection of historical data. Using this approach, the observed inter sub-catchments correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology is applied in recovering the space-time variability in modeled streamflow for twelve flood processes over the Huaihe Basin. Results demonstrate that the observation of discharge is included in the interval between the 5th percentage and the 95th percentage forecasts of discharge that is generated by MAP ensemble forecasts which is calculated from the conditional meta-Gaussian distribution model and Schaake shuffle. Several members can capture the flood peak flow and the corresponding peak time. Using approach of Schaake Shuffle, sub-catchment correlations of each ensemble member forecasting could be recovered, which are closer to the observation.A test of flood forecasting result from precipitation probability forecasts of conditional meta-Gaussian distribution model and Schaake shuffle for the stream between Dapoling to Wangjiaba Hydrologic Station is carried out. It shows that MAP ensemble forecasts can provide the maximum estimation of possibility of the future hydrologic events for flood forecasting comparing to the single-value MAP forecast of GFS model. And a comprehensive interval which includes the factor that can lead to hydrologic uncertainty is also given.
  • Fig. 1  Illustration of the catchment and the location of 19 stations over the Huaihe Basin

    Fig. 2  The discharge and drainage areal rainfall of Wangjiaba Hydrologic Station from 7 Sep to 20 Sep in 1988

    (a)forecasted discharge in comparison with observation, (b)forecasted areal rainfall in comparison with observation

    Fig. 3  The discharge and drainage areal rainfall of Wangjiaba Hydrologic Station from 31 Jul to 13 Aug in 1991

    (a)forecasted discharge in comparison with observation, (b)forecasted areal rainfall in comparison with observation

    Table  1  The ensemble reordering method: The ranked ensemble output

    子流域1 子流域2 子流域3
    集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm
    1 0 1 0 1 0
    2 0 2 0 2 0.1
    3 0.2 3 0 3 0.1
    4 0.4 4 0.1 4 0.2
    5 1.0 5 0.3 5 0.2
    6 1.1 6 0.5 6 0.3*
    7 1.2* 7 0.9* 7 0.8
    8 2.1 8 1.0 8 1.2
    9 3.1 9 1.1 9 1.7
    10 6.1 10 1.2 10 2.3
    DownLoad: Download CSV

    Table  2  The ensemble reordering method: Randomly selected historical observations

    序号 时间 面雨量/mm
    子流域1 子流域2 子流域3
    1 1991-09-20 2.3* 1.2* 0.5*
    2 1992-09-20 1.8 0.2 0.1
    3 1993-09-20 0 0 0.1
    4 1994-09-20 0 0.1 0
    5 1995-09-20 0 0.3 0
    6 1996-09-20 0 0.5 0
    7 1997-09-20 7.6 3.9 6.8
    8 1998-09-20 15.9 9.0 9.9
    9 1999-09-20 19.8 30.1 12.7
    10 2000-09-20 1.1 1.2 2.3
    DownLoad: Download CSV

    Table  3  The ensemble reordering method: The ranked historical observations

    子流域1 子流域2 子流域3
    集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm
    3 0 3 0 4 0
    4 0 4 0.1 5 0
    5 0 2 0.2 6 0
    6 0 5 0.3 3 0.1
    10 1.1 6 0.5 2 0.1
    2 1.8 10 1.2 1 0.5*
    1 2.3* 1 1.2* 10 2.3
    7 7.6 7 3.9 7 6.8
    8 15.9 8 9 8 9.9
    9 19.8 9 30.1 9 12.7
    DownLoad: Download CSV

    Table  4  The ensemble reordering method: Final ensemble(shuffled output)

    序号 子流域1 子流域2 子流域3
    集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm 集合成员
    排列序号
    面雨量/mm
    1 7 1.2 7 0.9 6 0.3
    2 6 1.1 3 0 5 0.2
    3 1 0 1 0 4 0.2
    4 2 0 2 0 1 0
    5 3 0.2 4 0.1 2 0.1
    6 4 0.4 5 0.3 3 0.1
    7 8 2.1 8 1.0 8 1.2
    8 9 3.1 9 1.1 9 1.7
    9 10 6.1 10 1.2 10 2.3
    10 5 1.0 6 0.5 7 0.8
    DownLoad: Download CSV

    Table  5  Validation results of probabilistic 12 flood process prediction

    洪水起始时间 洪峰流量预报相对误差/% 峰现预报时间误差/d
    第5百分位 中位数 第95百分位 第5百分位 中位数 第95百分位
    1985-05-01T08:00 -88 -52 166 7 -1 0
    1985-06-17T08:00 -85 -76 88 -6 4 3
    1988-09-07T08:00 -94 -78 33 -4 5 1
    1989-08-03T08:00 -82 -81 -18 -8 -8 -3
    1990-07-16T08:00 -95 -90 -49 -4 7 7
    1991-06-09T08:00 -92 -90 -7 -7 0 1
    1991-07-31T08:00 -97 -93 20 -9 1 1
    1992-04-26T08:00 -91 -75 22 -12 0 0
    1994-06-02T08:00 -87 -83 57 -6 3 -1
    1998-06-28T08:00 -96 -92 39 -4 1 1
    2000-06-20T08:00 -98 -86 -12 -11 1 -4
    2003-06-25T08:00 -80 -80 0 -8 -8 4
    DownLoad: Download CSV
  • [1]
    Krzysztofowicz R.Bayesian system for probabilistic river stage forecasting.J Hydrol, 2002, 268:16-40. doi:  10.1016/S0022-1694(02)00106-3
    [2]
    杜钧.集合预报的现状和前景.应用气象学报, 2002, 13(1):16-28. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020102&flag=1
    [3]
    张洪刚, 郭生练, 何新林, 等.水文预报不确定性的研究进展与展望.石河子大学学报(自然科学版), 2006, 24(1):15-21. http://www.cnki.com.cn/Article/CJFDTOTAL-SHZN200601003.htm
    [4]
    Krzysztofowicz R.Probabilistic hydrometeorological forecasts:Toward a new era in operational forecasting.Bull Amer Meteor Soc, 1998, 79(2), 243-251. doi:  10.1175/1520-0477(1998)079<0243:PHFTAN>2.0.CO;2
    [5]
    葛守西.现代洪水预报技术.北京:中国水利水电出版社, 1999.
    [6]
    王莉莉, 陈德辉, 赵琳娜.GRAPES气象-水文模式在一次洪水预报中的应用.应用气象学报, 2012, 23(3):274-284. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120303&flag=1
    [7]
    Murphy A H, Martin E.On the relationship between the accuracy and value of forecasts in the cost-loss ratio situation.Wea Forecasting, 1987, 2(1):243-251. http://adsabs.harvard.edu/abs/1987WtFor...2..243M
    [8]
    Richardson D S.Skill and relative economic value of the ECMWF ensemble prediction system.Q J R Meteor Soc, 2000, 126:649-667. doi:  10.1002/qj.v126:563
    [9]
    黄伟军, 丁晶.水文水资源系统贝叶斯分析现状与前景.水科学进展, 1994, 5(3):242-247. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ403.011.htm
    [10]
    钱名开, 徐时进, 王善序, 等.淮河息县站流量概率预报模型研究.水文, 2004, 24(2):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200402006.htm
    [11]
    张洪刚, 郭生练, 刘攀, 等.基于贝叶斯分析的概率洪水预报模型研究.水电能源科学, 2004, 22(1):22-25. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY200401007.htm
    [12]
    邢贞相, 付强, 刘东, 等.水文模型参数不确定性及对概率洪水预报的影响.水电能源科学, 2011, 29(4):51-54. http://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201104016.htm
    [13]
    刘章君, 郭生练, 李天元, 等.贝叶斯概率洪水预报模型及其比较应用研究.水利学报, 2014, 45(9):1019-1028. http://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201409002.htm
    [14]
    沈铁元, 廖移山, 彭涛, 等.定量分析数值模式日降水预报结果的不确定性.气象, 2011, 37(5):540-546. doi:  10.7519/j.issn.1000-0526.2011.05.004
    [15]
    梁莉, 赵琳娜, 巩远发, 等.淮河流域汛期20 d内最大日降水量概率分布.应用气象学报, 2011, 22(4):421-428. doi:  10.11898/1001-7313.20110404
    [16]
    王晨稀.短期集合降水概率预报试验.应用气象学报, 2005, 16(1):78-88. doi:  10.11898/1001-7313.20050110
    [17]
    Bao Hongjun, Zhao Linna, He Yi, et al.Coupling ensemble weather predictions based on TIGGE database with grid-Xinanjiang model for flood forecast.Advances in Geosciences, 2011, 29(1):61-67. http://www.oalib.com/paper/1370227
    [18]
    Zhao Linna, Qi Dan, Tian Fuyou, et al.Probabilistic flood prediction in the upper Huaihe catchment using TIGGE data.Acta Meteor Sinica, 2012, 26(1):62-71. doi:  10.1007/s13351-012-0106-3
    [19]
    梁莉, 赵琳娜, 齐丹, 等.基于贝叶斯原理降水订正的水文概率预报试验.应用气象学报, 2013, 24(4):416-424. doi:  10.11898/1001-7313.20130404
    [20]
    钟逸轩, 吴裕珍, 王大刚, 等.基于贝叶斯模式平均的大渡河流域集合降水概率预报研究.水文, 2016, 36(1):8-14;57. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201601002.htm
    [21]
    赵琳娜, 刘莹, 党皓飞, 等.集合数值预报在洪水预报中的应用进展.应用气象学报, 2014, 25(6):641-653. doi:  10.11898/1001-7313.20140601
    [22]
    梁忠民, 蒋晓蕾, 曹炎煦, 等.考虑降雨不确定性的洪水概率预报方法.河海大学学报(自然科学版), 2016, 44(1):8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601002.htm
    [23]
    Lorenz E N. 混沌的本质. 刘式达, 刘式适, 严中伟, 译. 北京: 气象出版社, 1997.
    [24]
    叶笃正, 严中伟, 戴新刚, 等.未来的天气气候预测体系.气象, 2006, 32(4):3-8. doi:  10.7519/j.issn.1000-0526.2006.04.001
    [25]
    王元.中国致灾暴雨研究的进展和若干热点问题——第四次全国暴雨学术研讨会.科学技术与工程, 2002, 2(6):88-91. http://www.cnki.com.cn/Article/CJFDTOTAL-KXJS200206029.htm
    [26]
    何光碧, 屠妮妮, 张利红.多模式对四川一次强降水过程不确定性预报分析.高原山地气象研究, 2009, 29(4):18-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SCCX200904003.htm
    [27]
    Schaake J, Demargne J, Hartman R, et al.Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrology and Earth System Sciences Discussions, 2007, 4(2):655-717. doi:  10.5194/hessd-4-655-2007
    [28]
    武震, 张世强, 丁永建.水文系统模拟不确定性研究进展.中国沙漠, 2007, 27(5):890-896. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS200705029.htm
    [29]
    Clark M, Gangopadhyay S, Hay L, et al.The Schaake Shuffle:A method for reconstructing space-time variability in forecasted precipitation and temperature fields.Journal of Hydrometeorology, 2004, 5(1):243-262. doi:  10.1175/1525-7541(2004)005<0243:TSSAMF>2.0.CO;2
    [30]
    毕宝贵, 矫梅燕, 廖要明, 等.2003年淮河流域大洪水的雨情、水情特征分析.应用气象学报, 2004, 15(6):681-687. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040683&flag=1
    [31]
    矫梅燕, 金荣花, 齐丹.2007年淮河暴雨洪涝的气象水文特征.应用气象学报, 2008, 19(3):257-264. doi:  10.11898/1001-7313.20080301
    [32]
    陈隆勋.亚洲季风机制研究新进展.北京:气象出版社, 1999. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200920021.htm
    [33]
    赵坤, 傅海燕, 李薇, 等.流域水文模型研究进展.现代农业科技, 2009(23):267-270. doi:  10.3969/j.issn.1007-5739.2009.23.182
    [34]
    袁作新.流域水文模型.北京:水利电力出版社, 1990.
    [35]
    许钦, 任立良, 杨邦, 等.BTOPMC模型与新安江模型在史河上游的应用比较研究.水文, 2008, 28(2):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ200802005.htm
    [36]
    于安民, 陈思宇, 周绍飞.新安江模型在乌裕尔河流域的应用.东北水利水电, 2008, 26(5):35-37. http://www.cnki.com.cn/Article/CJFDTOTAL-DBSL200805013.htm
    [37]
    胡宇丰, 安波, 陆玉忠, 等.新安江模型在嫩江流域洪水预报中应用.东北水利水电, 2011, 29(8):41-45. http://www.cnki.com.cn/Article/CJFDTOTAL-DBSL201108015.htm
    [38]
    Hamill T M, Hagedorn R, Whitaker J S.Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts, part Ⅱ:Precipitation.Mon Wea Rev, 2008, 136(7):2620-2632. doi:  10.1175/2007MWR2411.1
    [39]
    刘莹, 赵琳娜, 段青云, 等.一种由单值预报生成定量降水概率预报的方法及初步应用.气象, 2013, 39(3):313-323. doi:  10.7519/j.issn.1000-0526.2013.03.005
    [40]
    毕宝贵, 徐晶, 林建.面雨量计算方法及其在海河流域的应用.气象, 2003, 29(8):39-42. doi:  10.7519/j.issn.1000-0526.2003.08.009
  • 加载中
  • -->

Catalog

    Figures(3)  / Tables(5)

    Article views (3716) PDF downloads(433) Cited by()
    • Received : 2017-05-17
    • Accepted : 2017-06-29
    • Published : 2017-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint