Wang Tingbo, Zheng Dong, Zhou Kanghui, et al. Contrastive analysis of lightning characteristics between rainstorm case and hailstorm case. J Appl Meteor Sci, 2017, 28(5): 568-578. DOI:  10.11898/1001-7313.20170505.
Citation: Wang Tingbo, Zheng Dong, Zhou Kanghui, et al. Contrastive analysis of lightning characteristics between rainstorm case and hailstorm case. J Appl Meteor Sci, 2017, 28(5): 568-578. DOI:  10.11898/1001-7313.20170505.

Contrastive Analysis of Lightning Characteristics Between Rainstorm Case and Hailstorm Case

DOI: 10.11898/1001-7313.20170505
  • Received Date: 2017-01-03
  • Rev Recd Date: 2017-07-18
  • Publish Date: 2017-09-30
  • Two kinds of classic convective systems in and around Beijing are picked to investigate the lightning activities (observed by SAFIR3000) and the relationship between lightning and precipitation (retrieved from radar) during different thunderstorms. Lightning activity characteristics of a rainstorm and a hailstorm are analyzed and compared. Due to different microphysics and dynamic processes, there are significant differences in the discharge process within clouds, resulting in significant differences in corresponding lightning activities. The hailstorm has larger ratio of CG (cloud-to-ground) lightning, and the ratio of positive CG lightning is 0.311, comparing to 0.191 of the rainstorm.During the rainstorm, the intensity of convective precipitation is decreasing sharply when the lightning frequency reaches the highest value. The lightning frequency in this region can provide about 5-15 min warning time for the maximum rainfall intensity. In the early stage of hailstorm, rainstorm with short duration occurs, and the frequency of lightning reaches the peak when the hailstorm occurs, and then it declines as the hailstorm maintains. The hailstorm has larger ratio of CG lightning than the rainstorm. The main discharge area in hailstorm is higher than that in rainstorm, the temperature layer corresponded to the main charge region in hailstorm is lower than that in rainstorm. The total lightning frequency between convective precipitation's linear correlation coefficient is better in rainstorm than that in hailstorm.The linear correlation between lightning and precipitation in hailstorm is more complicated, because hailstorm has more complex dynamic and ice phase microphysics. These quantificational results can provide reference for applications of lightning data in severe weather warning and precipitation estimation.However, it's not certain whether all hailstorms have the similar lightning and precipitation relationships (the highest precipitation in the early stage of the hailstorms, and the total flash to reach the maximum in the hail stage). These results can be improved through further analysis when there are more observation cases.
  • Fig. 1  The distribution of SAFIR and radar stations

    Fig. 2  Frequencies of total flash and cloud-to-ground flash

    (a)rainstorm case, (b)hailstorm case

    Fig. 3  The ratio of positive cloud-to-ground flash to total cloud-to-ground flash

    (a)rainstorm case, (b)hailstorm case

    Fig. 4  Frequencies of positive cloud-to-ground flash and total cloud-to-ground flash evolving by time

    (a)rainstorm case, (b)hailstorm case

    Fig. 5  Total flash frequency and mean value of convective precipitation intensity

    (a)rainstorm case, (b)hailstorm case

    Fig. 6  Total flash frequency and maximum value of convective precipitation intensity

    (a)rainstorm case, (b)hailstorm case

    Fig. 7  Total flash frequency and convective precipitation evolving by time

    (a)rainstorm case, (b)hailstorm case

    Table  1  The calculation of the influence radius

    影响半径/km 平均背景回波强度
    1 Zbg < 25 dBZ
    2 25 dBZ≤Zbg < 30 dBZ
    3 30 dBZ≤Zbg < 35 dBZ
    4 35 dBZ≤Zbg < 40 dBZ
    5 Zbg≥40 dBZ
    DownLoad: Download CSV

    Table  2  The numerical distribution of total flash frequency

    项目 总闪频次
    暴雨个例 雹暴个例
    体扫数 55 40
    最小值 34 2
    最大值 847 7209
    算术平均值 346 1270
    中值 317 837
    数据累积5%处的值 66 56
    数据累积95%处的值 770 3372
    数据累积25%处的值 235 295
    数据累积75%处的值 438 1777
    DownLoad: Download CSV

    Table  3  The numerical distribution of cloud-to-ground flash frequency during rainstorm on 24 Jul 2006

    暴雨个例 地闪频次 正地闪频次 正地闪比例 地闪占总闪的比例
    最小值 1 0 0 0.014
    最大值 49 13 0.75 0.105
    算术平均值 17 3 0.191 0.052
    中值 14 3 0.163 0.049
    数据累积5%处的值 3 0 0 0.020
    数据累积95%处的值 39 8 0.5 0.098
    数据累积25%处的值 7 1 0.094 0.034
    数据累积75%处的值 25 4 0.265 0.068
    DownLoad: Download CSV

    Table  4  The numerical distribution of cloud-to-ground flash frequency during hailstorm on 7 Jul 2007

    雹暴个例 地闪频次 正地闪频次 正地闪比例 地闪占总闪的比例
    最小值 2 1 0.145 0.004
    最大值 253 57 0.600 0.737
    算术平均值 67 19 0.311 0.117
    中值 55 21 0.286 0.079
    数据累积5%处的值 5 2 0.176 0.006
    数据累积95%处的值 138 36 0.523 0.394
    数据累积25%处的值 29 10 0.232 0.028
    数据累积75%处的值 92 25 0.357 0.124
    DownLoad: Download CSV
  • [1]
    Price C, Federmesser B.Lightning-rainfall relationships in Mediterranean winter thunderstorms.Geophys Res Lett, 2006, 33(7):L07813. http://adsabs.harvard.edu/abs/2006GeoRL..33.7813P
    [2]
    Chang D E, Weinman J A, Morales C A, et al.The effect of spaceborne microwave and ground-based continuous lightning measurements on forecasts of the 1998 Groundhog Day storm.Mon Wea Rev, 2001, 129(8):1809-1833. doi:  10.1175/1520-0493(2001)129<1809:TEOSMA>2.0.CO;2
    [3]
    Schultz C J, Petersen W A, Carey L D.Lightning and severe weather:A comparison between total and cloud-to-ground lightning trends.Wea Forecasting, 2011, 26(5):744-755. doi:  10.1175/WAF-D-10-05026.1
    [4]
    Reap R M, MacGorman D M.Cloud-to-ground lightning:Climatological characteristics and relationships to model fields, radar observations and severe local storms.Mon Wea Rev, 1989, 117:518-535. doi:  10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2
    [5]
    Rakov V A, Uman M A.The Lightning Physics and Effects.New York:Cambridge University Press, 2003:24-52.
    [6]
    MacGorman D R, Burgess D W.Positive cloud-to-ground lightning in tornadic storms and hailstorms.Mon Wea Rev, 1994, 122:1671-1697. doi:  10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2
    [7]
    冯桂力, 郄秀书, 袁铁, 等.雹暴的闪电活动特征与降水结构研究.中国科学(地球科学), 2007, 37(1):123-132. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701013.htm
    [8]
    Rison W, Thomas R J, Krehbiel P R, et al.AGPS-based three dimensional lightning mapping system:Initial observations in central New Mexico.Geophys Res Lett, 1999, 26:3573-3576. doi:  10.1029/1999GL010856
    [9]
    Thomsa R J, Krehbiel P R, Rison W, et al.Observation of VHF source powers radiated by lightning.Geophys Res Lett, 2001, 28:143-146. doi:  10.1029/2000GL011464
    [10]
    李亚珺, 张广庶, 文军, 等.沿海地区一次多单体雷暴电荷结构时空演变.地球物理学报, 2012, 55(10):3203-3212. doi:  10.6038/j.issn.0001-5733.2012.10.003
    [11]
    Gallin L J, Farges T, Marchiano R, et al.Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array.Journal of Geophysical Research:Atmospheres, 2016, 121(8):3929-3953. doi:  10.1002/2015JD023745
    [12]
    Seity Y, Soula S, Tabary P, et al.The convective storm systemduring IOP 2a of MAP:Cloud-to-ground lightning flash production in relation to dynamics and microphysics.Q J R Meteorol Soc, 2003, 129:523-542. doi:  10.1256/qj.02.03
    [13]
    Branick M L, Doswell Ⅲ C A.An observation of the relationship between supercell structure and lightning ground strike polarity.Wea Forecasting, 1992, 7:143-149. doi:  10.1175/1520-0434(1992)007<0143:AOOTRB>2.0.CO;2
    [14]
    Rakov V A, Uman M A.Lightning Physics and Effects.New York:Cambridge University Press, 2003, 1:81-82.
    [15]
    Petersen W A, Rutledge S A.On the relationship between cloud-to-ground lightning and convective rainfall.J Geophys Res, 1998, 103(D12):14025-14040. doi:  10.1029/97JD02064
    [16]
    郑栋, 但建茹, 张义军, 等.我国地闪活动和降水关系的区域差异.热带气象学报, 2012, 28(4):569-576. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201204017.htm
    [17]
    王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. doi:  10.11898/1001-7313.20140104
    [18]
    王艳, 郑栋, 张义军.2000-2007年登陆台风中闪电活动与降水特征.应用气象学报, 2011, 22(3):321-328. doi:  10.11898/1001-7313.20110308
    [19]
    Webb J D, Blackshaw J K.Notable Scottish thunderstorms in summer 2011.Weather, 2012, 67(8):199-203. doi:  10.1002/wea.v67.8
    [20]
    Xu Shuang, Zheng Dong, et al.Characteristics of the two active stages of lightning activity in two hailstorms.J Meteor Res, 2016, 30:265-281. doi:  10.1007/s13351-016-5074-6
    [21]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.11898/1001-7313.20100304
    [22]
    Lang T J, Lyons W A, Cummer S A, et al.Observations of two sprite-producing storms in Colorado.J Geophys Res, 2016, 121, DOI: 10.1002/2016JD025299.
    [23]
    葛润生, 姜海燕, 彭红.北京地区雹暴气流结构的研究.应用气象学报, 1998, 9(1):1-7. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=19980101&flag=1
    [24]
    周志敏, 郭学良, 崔春光, 等.强风暴个例电荷结构及云闪放电差异的数值模拟.高原气象, 2012, 31(3):427. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX201203025.htm
    [25]
    Soula S, Seity Y, Feral L, et al.Cloud-to-ground lightning activity in hail-bearing storms.Journal of Geophysical Research:Atmospheres, 2004, 109(D2), DOI: 10.1029/2003JD003669.
    [26]
    Schultz C J, Petersen W A, Carey L D.Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather.Journal of Applied Meteorology and Climatology, 2009, 48(12):2543-2563. doi:  10.1175/2009JAMC2237.1
    [27]
    Nishihashi M, Arai K, Fujiwara C, et al.Characteristics of lightning jumps associated with a tornadic supercell on 2 September 2013.SOLA, 2015, 11(0):18-22. doi:  10.2151/sola.2015-005
    [28]
    Takahashi T, Tajiri T, Sonoi Y.Charges on Graupel and snow crystals and the electrical structure of winter thunderstorms.J Atmos Sci, 1999, 56:1561-1578. doi:  10.1175/1520-0469(1999)056<1561:COGASC>2.0.CO;2
    [29]
    Ziper E J.Deep cumulonimbus cloud systems in the tropics with and without lightning.Mon Wea Rev, 1994, 122:1837-1851. doi:  10.1175/1520-0493(1994)122<1837:DCCSIT>2.0.CO;2
    [30]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. doi:  10.11898/1001-7313.20140501
    [31]
    蒙伟光, 易燕明, 杨兆礼, 等.广州地区雷暴过程云-地闪特征及其环境条件.应用气象学报, 2008, 19(5):611-619. doi:  10.11898/1001-7313.20080513
    [32]
    张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi:  10.11898/1001-7313.20130209
    [33]
    周康辉, 郑永光, 蓝渝.基于闪电数据的雷暴识别、追踪与外推方法.应用气象学报, 2016, 27(2):173-181. doi:  10.11898/1001-7313.20160205
    [34]
    Pineda N, Rigo T, Bech J, et al.Lightning and precipitation relationship in summer thunderstorms:Case studies in the North Western Mediterranea region.Atmos Res, 2007, 85:159-170. doi:  10.1016/j.atmosres.2006.12.004
    [35]
    吴量, 冯桂力, 杨仲江, 等.雷达资料在雷电临近预警中的应用研究.成都信息工程学院学报, 2011, 26(6):672-673. http://www.cnki.com.cn/Article/CJFDTOTAL-CDQX201106014.htm
    [36]
    Steiner M, Houze R A, Yuter S E.Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data.J Appl Meteor, 1995, 34:1978-2007. doi:  10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2
    [37]
    周筠君, 郄秀书, 张义军, 等.地闪与对流性天气系统中降水关系的分析.气象学报, 1999, 7(1):103-111. doi:  10.11676/qxxb1999.009
  • 加载中
  • -->

Catalog

    Figures(7)  / Tables(4)

    Article views (3517) PDF downloads(499) Cited by()
    • Received : 2017-01-03
    • Accepted : 2017-07-18
    • Published : 2017-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint