Deng Hua, Liao Fei, Zhang Xubin, et al. Impact of wind profiler data on regional model prediction in South China. J Appl Meteor Sci, 2017, 28(5): 600-610. DOI:  10.11898/1001-7313.20170508.
Citation: Deng Hua, Liao Fei, Zhang Xubin, et al. Impact of wind profiler data on regional model prediction in South China. J Appl Meteor Sci, 2017, 28(5): 600-610. DOI:  10.11898/1001-7313.20170508.

Impact of Wind Profiler Data on Regional Model Prediction in South China

DOI: 10.11898/1001-7313.20170508
  • Received Date: 2017-01-09
  • Rev Recd Date: 2017-06-12
  • Publish Date: 2017-09-30
  • Weather analysis demonstrates that upper-level jet, low-level jet, and wind shear are closely related with rainstorms and severe convections in South China. Wind profiler radar can continuously observe wind, making it the most direct resource of upper wind observation comparing with conventional observations. A network of observation stations with 18 wind profiler radars is built in Guangdong, data of which are assimilated every 3 hours in GRAPES_Meso model in real time, and the influence of wind profiler data is evaluated. A precipitation process in the pre-flood season of South China from 28 March to 9 April in 2014 is simulated through three designed experiments by GRAPES_Meso model. Results of assimilation trials show that wind profile data contribute a lot to analysis increment of zonal wind at levels from 1000 hPa to 850 hPa, especially at 850 hPa, and this effect rapidly diminishes above 700 hPa level. The root mean square error (RMSE) of forecasted variables at radiosonde stations are calculated in terms of sounding observations and the outcome of three experiments. Results show that profiler data mostly improve RMSE at 850 hPa, which announces a 0.7 m·s-1 reduce of forecasted wind speed error, for 700 hPa level there's no evident improvement, and for 925 hPa level it becomes even worse. The same RMSE analysis is done at 12 wind profiler stations. The result is in accordance with radiosonde stations, which shows that the RMSE decreases at 850 hPa as well and the improvement is not evident at 925 hPa. The analysis indicates that the quality of wind profiler data is relatively better at 850 hPa. Results of two sensitive experiments for 1200 UTC 30 March 2014 is examined, revealing that the RMSE of the forecasted wind speed is even greater when wind profiler data are used in assimilation at locations of heavy rain grade or above. Besides, it seems that the RMSE of the forecasted wind speed also increases in the downstream direction of this heavy rain location. Causes of these two phenomena still need to be analyzed.
  • Fig. 1  Distribution of wind profiler radar stations and radiosonde stations in Guangdong Province

    Fig. 2  Numbers of wind profiler stations and the sum of wind field vertical levels of every staion after quality control from 28 Mar to 8 Apr in 2014

    Fig. 3  Analysis increments of zonal wind at mandatory pressure levels for radiosonde stations from 29 Mar to 8 Apr in 2014

    (a)sensitive experiment 1, (b)sensitive experiment 2 relative to sensitive experiment 1

    Fig. 4  Ratio (r) of wind speed root mean square error to mean wind at mandatory pressure levels from 29 Mar to 8 Apr in 2014 for radiosonde stations

    Fig. 5  Difference between sensitive experiment 1 and sensitive experiment 2 for the forecast root mean square error between observation and forecast at mandatory pressure levels from 29 Mar to 8 Apr in 2014 for radiosonde stations

    (a)wind speed (ΔV), (b)temperature (ΔT), (c)potential height (ΔH)

    Fig. 6  Ratio (r) of wind speed root mean square error to mean wind at mandatory pressure levels from 29 Mar to 8 Apr in 2014 for profiler stations

    Fig. 7  Difference between sensitive experiment 1 and sensitive experiment 2 for the wind speed root mean square error at lower levels from 29 Mar to 8 Apr in 2014 for profiler stations

    Fig. 8  Differences of 850 hPa zonal wind(a) and meridional wind(b) analysis increments between sensitive experiment 1 and sensitive experiment 2 at 0600 UTC 30 Mar 2014

    Table  1  850 hPa wind speed forecast error at 1200 UTC 30 Mar 2014 for profiler stations

    站名 敏感性试验1风速均方根误差/(m·s-1) 敏感性试验2风速均方根误差/(m·s-1) 同化本站风廓线雷达资料层数
    潮州 4.40 0.94 9
    连州 2.20 1.21 9
    五华 8.02 7.09 10
    新会 19.53 18.08 10
    珠海 9.29 6.90 6
    阳江 4.59 0.56 0
    南雄 0.45 2.33 0
    龙门 3.84 6.73 10
    从化 6.03 7.12 10
    增城 8.28 8.99 7
    南沙 14.72 15.74 0
    罗定 7.07 9.09 0
    DownLoad: Download CSV
  • [1]
    何立富, 周庆亮, 陈涛."05.6"华南暴雨中低纬度系统活动及相互作用.应用气象学报, 2010, 21(4):385-394. doi:  10.11898/1001-7313.20100401
    [2]
    陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2015, 26(5):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20160308&flag=1
    [3]
    Kuo Y H, Donall E G, Shapiro M A.Feasibility of short-range numerical weather prediction using observations from a network profilers.Mon Wea Rev, 1987, 115:2402-2427. doi:  10.1175/1520-0493(1987)115<2402:FOSRNW>2.0.CO;2
    [4]
    Cram J M, Kaplan M L, Mattocks C A, et al.The use and analysis of profiler winds to derive mesoscale height and temperature fields:Simulation and real-data experiment.Mon Wea Rev, 1991, 119:1040-1056. doi:  10.1175/1520-0493(1991)119<1040:TUAAOP>2.0.CO;2
    [5]
    王欣, 卞林根, 彭浩, 等.风廓线仪系统探测试验与应用.应用气象学报, 2005, 6(5):63-68. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20050590&flag=1
    [6]
    Smith T L, Benjamin S G.Impact of network wind profiler data on a 3-h data assimilation system.Bull Amer Meteor Soc, 1993, 74(5):801-807. doi:  10.1175/1520-0477(1993)074<0801:IONWPD>2.0.CO;2
    [7]
    Spencer P L, Janish P R, Doswell C A.A four-dimensional objective analysis scheme and multitriangle technique for wind profiler data.Mon Wea Rev, 1999, 127:279-291. doi:  10.1175/1520-0493(1999)127<0279:AFDOAS>2.0.CO;2
    [8]
    Nielsen-Gammon J W, Mcnider R T, Angevine W M, et al.Mesoscale model performance with assimilation of wind profiler data:Sensitivity to assimilation parameters and network configuration.J Geophys Res, 2007, 112:185-194. doi:  10.1029/2006JD007633/full
    [9]
    Zhang L, Pu Z.Four-dimensional assimilation of multitime wind profiles over a single station and numerical simulation of a mesoscale convective system observed during IHOP_2002.Mon Wea Rev, 2011, 139:3369-3388. doi:  10.1175/2011MWR3569.1
    [10]
    张旭斌, 万齐林, 薛纪善, 等.风廓线雷达资料质量控制及其同化应用.气象学报, 2015, 73(1):159-176. doi:  10.11676/qxxb2015.015
    [11]
    谭晓伟, 徐枝芳, 龚建东.风廓线雷达资料对GRAPES_MESO数值预报系统影响的初步研究.气象, 2016, 42(l):26-33. http://www.cnki.com.cn/Article/CJFDTOTAL-QXXX201601003.htm
    [12]
    张胜军, 徐祥德, 吴庆梅, 等."中国登陆台风外场科学试验"风廓线仪探测资料在四维同化中的初步应用研究.应用气象学报, 2004, 15(增刊Ⅰ):101-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2004S1014.htm
    [13]
    周芯玉, 廖菲.利用中位数方法对风廓线雷达数据质量控制的研究.热带气象学报, 2015, 31(6):804-810. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201506008.htm
    [14]
    陈浩君, 黄兴友, 孙婧, 等.基于径向功率谱的风廓线雷达错误风数据处理.应用气象学报, 2015, 26(4):460-471. doi:  10.11898/1001-7313.20150408
    [15]
    高祝宇, 阮征, 魏鸣, 等.风廓线雷达数据质量影响因子及处理算法.应用气象学报, 2016, 27(2):148-159. doi:  10.11898/1001-7313.20160203
    [16]
    邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-533. doi:  10.11898/1001-7313.20120502
    [17]
    Wan Q L, Xue J X, Zhuang S Y.Study on the variational assimilation technique for the retrieval of wind fields from Doppler radar data.Acta Meteorologica Sinica, 2006, 20(1):1-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qxxw200601001&dbname=CJFD&dbcode=CJFQ
    [18]
    Ding W Y, Wan Q L, Zhang C Z, et al.MODIS brightness temperature data assimilation under cloudy conditions Ⅰ:Methods and ideal tests.J Trop Meteor, 2010, 16(4):313-324. http://www.cnki.com.cn/Article/CJFDTOTAL-RQXB201004002.htm
    [19]
    Huang Y Y, Xue J S, Wan Q L, et al.Improvement of the surface pressure operator in GRAPES and its application in precipitation forecasting in South China.Adv Atmos Sci, 2013, 30(2):466-467. doi:  10.1007/s00376-012-1270-1
    [20]
    高郁东, 万齐林, 何金海.三维变分同化雷达视风速的改进方案及其数值试验.气象学报, 2011, 69(4):631-643. doi:  10.11676/qxxb2011.055
    [21]
    高郁东, 万齐林, 薛纪善, 等.同化雷达估算降水率对暴雨预报的影响.应用气象学报, 2015, 26(5):45-56. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
  • 加载中
  • -->

Catalog

    Figures(8)  / Tables(1)

    Article views (3409) PDF downloads(487) Cited by()
    • Received : 2017-01-09
    • Accepted : 2017-06-12
    • Published : 2017-09-30

    /

    DownLoad:  Full-Size Img  PowerPoint