Wang Ruotong, Wang Jianmin, Huang Xiangdong, et al. The architecture design of MICAPS4 server system. J Appl Meteor Sci, 2018, 29(1): 1-12. DOI:  10.11898/1001-7313.20180101.
Citation: Wang Ruotong, Wang Jianmin, Huang Xiangdong, et al. The architecture design of MICAPS4 server system. J Appl Meteor Sci, 2018, 29(1): 1-12. DOI:  10.11898/1001-7313.20180101.

The Architecture Design of MICAPS4 Server System

DOI: 10.11898/1001-7313.20180101
  • Received Date: 2017-07-25
  • Rev Recd Date: 2017-12-01
  • Publish Date: 2018-01-31
  • Meteorological data are typical non-structure data, which reach dozens of TBs per day. Data pre-processing, data storage and data access based on RDBMS and file system become the bottleneck of MICAPS3. To fulfill MICAPS4 users' need of fast, in-time query of meteorological real-time data, according to the multi-dimension model and the user query behavior of meteorological data, using non-relational key-value DDBMS, a high performance massive meteorological data storage system and a stable 7×24 distributed data pre-processing system is designed and established. MICAPS4 uses a client/server system architecture, and high-performance server cluster system is the critical component of MICAPS4. Using distributed key-value data model and P2P infrastructure, MICAPS4 server system distributes all real-time data which arrive at a very high speed to multiple servers through an automatic load balance algorithm, and all data are stored in memory initially and persistent to hard disk periodically, which can not only reduce the disk I/O operating times, but also guarantee the reduction of writing pressure accompanying the high load of reading pressure. To enhance the data and system reliability, distributed system architecture and multiple data replica are used, which also improves the throughput capacity of the system. According to statistic results gained from product environment, the performance of MICAPS4 server system improves 100 times more than MICAPS3. MICAPS4 server system transits all meteorological real-time data storage from file system to database, from centralized system to distributed system. The system becomes the core production system of China Meteorological Administration in 2015 and is popularized nationwide. Under the condition of massive meteorological data and concurrent access of many users, it shows high stability and excellent read-write performance, and it is also highly scalable and maintenance friendly. MICAPS4 high performance server system includes 5 sub-systems including distributed storage system, distributed pre-processing system, station data polling system, data query server and monitoring probe. The distributed storage system provides high performance data accessing services of meteorological real-time data in both random and sequence mode, the distributed pre-processing system implements the stream computing function of massive meteorological real-time data by adopting the peer to peer distributed system infrastructure, the station data polling system implements the heterogeneous station observation replica data synchronization function over different systems, the data query server implements MICAPS4 client real-time computing function by means of the multi-threading server technology, and the monitoring probe is deployed in each server node and reports host health messages periodically. The overall design of MICAPS4 server system is depicted, and the motivation, core technologies and the design of each sub-system are also introduced.
  • Fig. 1  CIMISS-MICAPS4 server system architecture

    Fig. 2  Data pre-processing system

    Fig. 3  Station data polling system

    Fig. 4  Data retrieval and real-time computing of data query server

    Fig. 5  Data writing of data query server

    Fig. 6  Monitor agent and system integration

  • [1]
    李月安, 曹莉, 高嵩, 等.MICAPS预报业务平台现状与发展.气象, 2010, 36(7):50-55. doi:  10.7519/j.issn.1000-0526.2010.07.010
    [2]
    高嵩, 毕宝贵, 李月安, 等.MICAPS4预报业务系统建设进展与未来发展.应用气象学报, 2017, 28(5):513-530. doi:  10.11898/1001-7313.20170501
    [3]
    Batory D S. Concepts for a Database System Compiler//Proceedings of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, New York, USA: ACM, 1988: 184-192.
    [4]
    龚健雅.空间数据库管理系统的概念与发展趋势.测绘科学, 2001, 26(3):4-9. http://www.bookask.com/book/1100701.html
    [5]
    齐贵滨, 周尔滨, 鞠洋.利用samba服务实现信息共享.黑龙江气象, 2012, 28(4):40-41. http://www.cqvip.com/QK/98099X/201104/40499411.html
    [6]
    赵春燕, 孙英锐, 董峰, 等.高性能气象数据存储集群及在线扩展技术应用.计算技术与自动化, 2013, 32(3):117-121. http://d.old.wanfangdata.com.cn/Periodical/jsjsyzdh201303026
    [7]
    肖华东, 孙婧, 张玺, 等.MARS软件在数值预报模式产品数据管理中的应用.应用气象学报, 2015, 26(2):247-256. doi:  10.11898/1001-7313.20150213
    [8]
    沈文海, 赵芳, 高华云, 等.国家级气象资料存储检索系统的建立.应用气象学报, 2004, 15(6):727-736. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040690&flag=1
    [9]
    钱建梅, 孙安来, 徐喆, 等.风云气象卫星数据存档与服务系统.应用气象学报, 2012, 23(3):369-376. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120314&flag=1
    [10]
    李集明, 沈文海, 王国复.气象信息共享平台及其关键技术研究.应用气象学报, 2006, 17(5):621-628. doi:  10.11898/1001-7313.20060505
    [11]
    Dong B, Qiu J, Zheng Q, et al. A Novel Approach to Improving the Efficiency of Storing and Accessing Small Files on Hadoop: A Case Study by PowerPoint Files//2010 IEEE International Conference on Services Computing (SCC). 2010: 65-72.
    [12]
    刘高军, 王帝澳.基于Redis的海量小文件分布式存储方法研究.计算机工程与科学, 2013, 35(10):58-64. doi:  10.3969/j.issn.1007-130X.2013.10.007
    [13]
    王若曈, 黄向东.海量气象数据实时解析与存储系统的设计与实现.计算机工程与科学, 2015, 37(11):58-64. http://www.wenkuxiazai.com/doc/efc10787f7ec4afe04a1dfd4-2.html
    [14]
    肖卫青, 杨润芝.Hadoop在气象数据密集型处理领域中的应用.气象科技, 2015, 43(5):823-828. https://www.cnki.com.cn/qikan-QXKJ201703006.html
    [15]
    陈东辉, 曾乐.基于HBase的气象地面分钟数据分布式存储系统.计算机应用, 2014, 34(9):2617-2621. doi:  10.11772/j.issn.1001-9081.2014.09.2617
    [16]
    李永生, 曾沁, 徐美红, 等.基于Hadoop的数值预报产品服务平台设计与实现.应用气象学报, 2015, 26(1):122-128. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150113&flag=1
    [17]
    Videla A, Williams J J W. RabbitMQ in action: Distributed messaging for everyone. Manning, 2012.
    [18]
    Hintjens P. ZeroMQ: Messaging for Many Applications. O'Reilly Media, Inc, 2013.
    [19]
    Kreps J, Narkhede N, Rao J. Kafka: A Distributed Messaging System for Log Processing//Proceedings of the NetDB. 2011: 1-7.
    [20]
    Toshniwal A, Taneja S, Shukla A, et al. Storm@twitter//Proceedings of the 2014 ACM SIGMOD International Conference on Management of data. ACM, 2014: 147-156.
    [21]
    Zaharia M, Chowdhury M, Das T, et al.Fast and interactive analytics over Hadoop data with Spark.USENIX Login, 2012, 37(4):45-51. https://www.usenix.org/publications/login/august-2012-volume-37-number-4/fast-and-interactive-analytics-over-hadoop-data
    [22]
    Carbone P, Katsifodimos A, Ewen S, et al.Apache Flink:Stream and batch processing in a single engine.Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 38(4):28-38. https://core.ac.uk/display/81032306
    [23]
    Ranjan R.Streaming big data processing in datacenter clouds.IEEE Cloud Computing, 2014, 1(1):78-83. doi:  10.1109/MCC.2014.22
    [24]
    Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing//Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, 2012: 2.
    [25]
    杨润芝, 马强, 李德泉, 等.内存转发模型在CIMISS数据收发系统中的应用.应用气象学报, 2012, 23(3):377-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120315&flag=1
    [26]
    邓莉, 王国复, 孙超, 等.基本气象资料共享系统建设.应用气象学报, 2004, 15(增刊Ⅰ):33-38. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2004z1005
    [27]
    王国复, 李集明, 邓莉, 等.中国气象科学数据共享服务网总体设计与建设.应用气象学报, 2004, 15(增刊Ⅰ):10-16. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb2004z1002
  • 加载中
  • -->

Catalog

    Figures(6)

    Article views (3373) PDF downloads(784) Cited by()
    • Received : 2017-07-25
    • Accepted : 2017-12-01
    • Published : 2018-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint