Zhang Ziyin, Zhao Xiujuan, Xiong Yajun, et al. The fog/haze medium-range forecast experiments based on dynamic statistic method. J Appl Meteor Sci, 2018, 29(1): 57-69. DOI: 10.11898/1001-7313.20180106.
Citation: Zhang Ziyin, Zhao Xiujuan, Xiong Yajun, et al. The fog/haze medium-range forecast experiments based on dynamic statistic method. J Appl Meteor Sci, 2018, 29(1): 57-69. DOI: 10.11898/1001-7313.20180106.

The Fog/Haze Medium-range Forecast Experiments Based on Dynamic Statistic Method

More Information
  • Beijing and eastern China have frequently suffered from severe fog/haze days in recent years, which are characterized by high particle mass concentration and low visibility. Severe haze/fog pollution, especially the persisted fog/haze days (i.e., in January 2013 and November, December of 2015) greatly threaten human health and traffic safety. These phenomena stimulate great interest in studying the fog/haze pollutions in Beijing or even eastern China. The fog/haze pollution is in general attributed to two aspects:Pollutants emission to the lower atmosphere from fossil fuel combustion, construction and others, and unfavorable meteorological diffusion conditions. Air quality or the occurrence of fog/haze pollution are strongly influenced by meteorology. Meteorological factors not only have essential impacts on the accumulation or diffusion, spread and regional transport of air pollutants, but also have important impacts on the formation of secondary aerosol which are generated by the complicated physical and chemical reactions. Particularly, weather conditions play an essential role in the daily variability of air pollutant concentrations.Based on the dynamic statistic forecasting method and the high-resolution weather forecast fields derived from European Centre for Medium-Range Weather Forecasts (ECMWF), the fog/haze medium-range forecast system is designed to provide objective and quantitative PM2.5 and visibility forecasts for cities in Beijing-Tianjin-Hebei and its adjacent regions by predicting 1 to 10 days in advance. A forecasting experiment is performed during the period from 1 October 2015 to 10 November 2016. Results show that the predicted PM2.5 concentrations and visibilities based on the method for 14 cities (Beijing, Tianjin, Shijiazhuang and others) and different leading times (namely 1 to 10 days in advance) are well consistent with the observed. All correlation coefficients between them are significant at 0.01 level. And most of the reduction errors (RE) between them are larger than 0.2. Most of TS values are confined in 0.1 to 0.3, and the mean of all TS values are close to 0.2 for visibility, PM2.5 grades and fog/haze phenomena. Moreover, several case analyses suggest that the method can predict the change trends of the continuous fog/haze process about 5-6 days in advance. Generally, the method can approximately predict the hourly variability of the PM2.5 concentration and visibility and the change trends of the process of fog/haze and heavy pollution in Beijing-Tianjin-Hebei and its adjacent regions on the medium-range time scale. The high reliability and stability of the forecasting test suggest that the objective and quantitative predictions produced by the method can be used with high reference value for the medium-range forecast of fog/haze and air quality in Beijing and surrounding cities.
  • Fig  1.   Correlation coefficients of the predicted visibility and the observed visibility(a) with those of PM2.5(b) in different leading times for Beijing and the mean of 14 cities

    Fig  2.   The mean bias of the predicted visibility and the observed visibility(a) with that of PM2.5(b) in different leading times for Beijing and the mean of 14 cities

    Fig  3.   The root mean square error of the predicted and observed visibility(a) with that of PM2.5(b) in different leading times for Beijing and the mean of 14 cities

    Fig  4.   The predicted error reduction of visibility(a) and PM2.5(b) in different leading times for Beijing and the mean of 14 cities

    Fig  5.   TS of the visibility prediction in different leading times for Beijing(a) and the mean of 14 cities(b)

    Fig  6.   TS of PM2.5 prediction in different leading times for Beijing(a) and the mean of 14 cities(b)

    Fig  7.   The observed and the predicted PM2.5(a) with visibility(b) during a fog/haze process in Oct 2015

    Fig  8.   The observed and the predicted PM2.5(a) with visibility(b) during a fog/haze process in Nov 2015

    Fig  9.   The observed and the predicted PM2.5(a) with visibility(b) during a fog/haze process in Nov 2016

    Table  1   Information of 14 cities

    序号 城市 纬度范围 经度范围
    1 北京 39.71°~40.11°N 116.20°~116.60°E
    2 天津 38.93°~39.33°N 117.00°~117.40°E
    3 石家庄 37.85°~38.25°N 114.31°~114.71°E
    4 保定 38.66°~39.06°N 115.28°~115.68°E
    5 济南 36.46°~36.86°N 116.81°~117.21°E
    6 太原 37.63°~38.03°N 112.35°~112.75°E
    7 大同 39.87°~40.27°N 113.11°~113.51°E
    8 呼和浩特 40.61°~41.01°N 111.50°~111.90°E
    9 张家口 40.59°~40.99°N 114.69°~115.09°E
    10 唐山 39.44°~39.84°N 117.96°~118.36°E
    11 沧州 38.10°~38.50°N 116.66°~117.06°E
    12 衡水 37.54°~37.94°N 115.48°~115.88°E
    13 邢台 36.86°~37.26°N 114.30°~114.70°E
    14 邯郸 36.40°~36.80°N 114.29°~114.69°E
    DownLoad: CSV

    Table  2   Correlation between the predicted visibility and the observed visibility in different leading times

    城市 预报时效
    24 h 72 h 120 h 168 h 216 h
    北京 0.75 0.73 0.71 0.57 0.47
    天津 0.71 0.70 0.68 0.55 0.39
    石家庄 0.67 0.61 0.58 0.53 0.41
    保定 0.71 0.71 0.64 0.59 0.38
    济南 0.68 0.57 0.59 0.47 0.49
    太原 0.58 0.59 0.54 0.47 0.38
    大同 0.72 0.68 0.64 0.57 0.46
    呼和浩特 0.66 0.66 0.59 0.55 0.39
    张家口 0.63 0.63 0.52 0.47 0.40
    唐山 0.71 0.70 0.69 0.56 0.41
    沧州 0.66 0.61 0.45 0.31 0.27
    衡水 0.69 0.61 0.53 0.43 0.35
    邢台 0.65 0.62 0.56 0.56 0.47
    邯郸 0.64 0.53 0.44 0.32 0.32
    注:相关系数均达到0.01显著性水平。
    DownLoad: CSV

    Table  3   TS of fog and haze predictions in different leading times

    预报时效/h
    北京 14个城市平均 北京 14个城市平均
    24 0.30 0.20 0.14 0.17
    48 0.26 0.18 0.10 0.14
    72 0.28 0.20 0.12 0.13
    96 0.30 0.21 0.16 0.13
    120 0.30 0.21 0.20 0.14
    144 0.21 0.19 0.16 0.15
    168 0.24 0.20 0.15 0.13
    192 0.22 0.19 0.17 0.11
    216 0.18 0.17 0.07 0.07
    240 0.19 0.17 0.04 0.07
    DownLoad: CSV
  • 吴兑.近十年中国灰霾天气研究综述.环境科学学报, 2012, 32(2):257-269. http://www.doc88.com/p-5048145331181.html
    王喜全, 孙明生, 杨婷, 等.京津冀平原地区灰霾天气的年代变化.气候与环境研究, 2013, 18(2):165-170. DOI: 10.3878/j.issn.1006-9585.2012.11094
    靳军莉, 颜鹏, 马志强, 等.北京及周边地区2013年1-3月PM2.5变化特征.应用气象学报, 2017, 26(6):690-700. DOI: 10.11898/1001-7313.20170605
    颜鹏, 刘桂清, 周秀骥, 等.上甸子秋冬季雾霾期间气溶胶光学特性.应用气象学报, 2010, 21(3):257-265. DOI: 10.11898/1001-7313.20100301
    徐晓斌.我国霾和光化学污染观测研究进展.应用气象学报, 2016, 27(5):604-619. DOI: 10.11898/1001-7313.20160509
    王自发, 李杰, 王哲, 等.2013年1月我国中东部强霾污染的数值模拟和防控对策.中国科学:地球科学, 2014, 44(1):3-14. http://www.doc88.com/p-4029262482732.html
    徐祥德, 王寅钧, 赵天良, 等.中国大地形东侧霾空间分布"避风港"效应及其"气候调节"影响下的年代际变异.科学通报, 2015, 60(12):1132-1143. http://www.oalib.com/paper/4267648
    潘玮, 左志燕, 肖栋, 等.近50年中国霾年代际特征及气象成因.应用气象学报, 2017, 28(3):257-269. DOI: 10.11898/1001-7313.20170301
    王开存, 李维亮, 白立杰.1984~2000年印度洋与中国地区上空对流层中上层及平流层气溶胶变化和输送特征.应用气象学报, 2004, 15(1):32-40. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20040104&flag=1
    徐祥德, 丁国安, 卞林根.北京城市大气环境污染机理与调控原理.应用气象学报, 2006, 17(6):815-828. DOI: 10.11898/1001-7313.20060618
    吴兑, 廖国莲, 邓雪娇, 等.珠江三角洲霾天气的近地层输送条件研究.应用气象学报, 2008, 19(1):1-9. DOI: 10.11898/1001-7313.20080101
    王跃思, 姚利, 刘子锐, 等.京津冀大气霾污染及控制策略思考.中国科学院院刊, 2013, 28(3):353-363. http://www.doc88.com/p-7744794366177.html
    张小曳, 孙俊英, 王亚强, 等.我国雾-霾成因及其治理的思考.科学通报, 2013, 58(13):1178-1187. http://csb.scichina.com:8080/CN/article/downloadArticleFile.do?attachType=PDF&id=510586
    周家斌, 黄嘉佑.近年来中国统计气象学的新进展.气象学报, 1997, 55(3):297-305. DOI: 10.11676/qxxb1997.030
    杨文峰, 史宝忠.一种新的城市SO2污染统计预报方法及其应用.应用气象学报, 2003, 14(2):223-229. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030227&flag=1
    魏凤英.现代气候统计诊断与预测技术(第二版).北京:气象出版社, 2007:213-276.
    康志明, 鲍媛媛, 周宁芳.我国中期和延伸期预报业务现状以及发展趋势.气象科技进展, 2013, 3(1):18-24. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201301011
    Neal L S, Agnew P, Moseley S, et al.Application of a statistical post-processing technique to a gridded, operational, air quality forecast.Atmos Environ, 2014, 98:385-393. DOI: 10.1016/j.atmosenv.2014.09.004
    Donnelly A, Misstear B, Broderick B.Real time air quality forecasting using integrated parametric and non-parametric regression techniques.Atmos Environ, 2015, 103:53-65. DOI: 10.1016/j.atmosenv.2014.12.011
    Silibello C, D'Allura A, Finardi S, et al.Application of bias adjustment techniques to improve air quality forecasts.Atmospheric Pollution Research, 2015, 6(6):928-938. DOI: 10.1016/j.apr.2015.04.002
    Prasada K, Goraib A K, Goyalc P.Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time.Atmos Environ, 2016, 28:246-262. https://www.sciencedirect.com/science/article/pii/S1352231016300073
    Perez P, Gramsch E.Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes.Atmos Environ, 2016, 124:22-27. DOI: 10.1016/j.atmosenv.2015.11.016
    孙峰.北京市空气质量动态统计预报系统.环境科学研究, 2004, 17(1):70-73. DOI: 10.3969/j.issn.1006-7639.2002.02.008
    Tian G J, Qiao Z, Xu X L.Characteristics of particulate matter (PM10) and its relationship with meteorological factors during 2001-2012 in Beijing.Environmental Pollution, 2014, 192:266-274. DOI: 10.1016/j.envpol.2014.04.036
    Zhang Z Y, Zhang X L, Gong D Y, et al.Evolution of surface O3 and PM2.5 concentrations and their relationships with meteorological conditions over the last decade in Beijing.Atmos Environ, 2015, 108:67-75. DOI: 10.1016/j.atmosenv.2015.02.071
    Fritts H C.Tree-Rings and Climate.London:Academic Press, 1976:1-567.
    Gong D Y, Luterbacher J.Variability of the low-level cross-equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies.Geophys Res Lett, 2008, 35, L01705, DOI: 1029/2007GL032409.
  • Related Articles

    [1]Liu Jiayi, Deng Lijiao, Fu Guobin, Bai Hongying, Wang Jun. The Applicability of Two Statistical Downscaling Methods to the Qinling Mountains[J]. Journal of Applied Meteorological Science, 2018, 29(6): 737-747. DOI: 10.11898/1001-7313.20180609
    [2]Hong Wei, Zheng Yulan. A Method of Short-time Strong Rainfall Forecasting During Pre-rainy Season in Fujian Based on ECMWF Productions[J]. Journal of Applied Meteorological Science, 2018, 29(5): 584-595. DOI: 10.11898/1001-7313.20180507
    [3]Feng Guolin, Zhao Junhu, Zhi Rong, Gong Zhiqiang, Zheng Zhihai, Yang Jie, Xiong Kaiguo. Recent Progress on the Objective and Quantifiable Forecast of Summer Precipitation Based on Dynamical-statistical Method[J]. Journal of Applied Meteorological Science, 2013, 24(6): 656-665.
    [4]Zhao Junhu, Yang Jie, Feng Guolin, Zhang Shixuan. Causes and Dynamic-statistical Forecast of the Summer Rainfall Anomaly over China in 2011[J]. Journal of Applied Meteorological Science, 2013, 24(1): 43-54.
    [5]Tan Guirong, Duan Hao, Ren Hongli. Statistical Correction for Dynamical Prediction of 500 hPa Height Field in Mid-high Latitudes[J]. Journal of Applied Meteorological Science, 2012, 23(3): 304-311.
    [6]Liu Lüliu, Sun Linhai, Liao Yaoming, Du Liangmin, Li Xiang. Prediction of Monthly Precipitation and Number of Extreme Precipitation Days with Statistical Downscaling Methods Based on the Monthly Dynamical Climate Model[J]. Journal of Applied Meteorological Science, 2011, 22(1): 77-85.
    [7]Wei Ruijiang, Song Yingbo, Wang Xin. Method for Dynamic Forecast of Corn Yield Based on Climatic Suitability[J]. Journal of Applied Meteorological Science, 2009, 20(5): 622-627.
    [8]Wang Jianlin, Yang Feiyun, Song Yingbo. METHOD RESEARCH FOR OPERATIONAL DYNAMIC FORECASTING OF MAIZE YIELD IN NORTH-WESTOF CHINA[J]. Journal of Applied Meteorological Science, 2004, 15(1): 51-57.
    [9]Wei Fengying. Regional Consensus Forecast Method with Dynamic Weighting for Summer Precipitation over China[J]. Journal of Applied Meteorological Science, 1999, 10(4): 402-409.
    [10]Li Huiwu, Jin Yiming. The Statistical-dynamic Prediction of Tropical Cyclone Track on the East China Sea[J]. Journal of Applied Meteorological Science, 1996, 7(3): 316-322.
  • Cited by

    Periodical cited type(13)

    1. 朱毓颖,郑玉,张备. 基于PhyDNet-ATT的能见度预报方法. 应用气象学报. 2024(06): 667-679 . 本站查看
    2. 张煦庭,刘慧,刘瑞芳,巨菲,刘嘉慧敏,高星星,黄少妮,王楠. 基于极端梯度提升算法的西安市逐小时PM_(2.5)浓度预报研究. 气象与环境学报. 2023(01): 44-54 .
    3. 徐哲永,马浩,高大伟,范其平,陈淑琴,刘菡. 多类短临预报产品对舟山群岛台风强降水的定量检验评估——以“米娜”为例. 科技通报. 2023(06): 1-13 .
    4. 董芳淑,廉丽姝,孙博雯,程禛,朱艳冰. 华东地区能见度时空变化特征及影响因子分析. 气象科技. 2023(04): 510-519 .
    5. 赵翠光,赵声蓉,林建,吕终亮,姚莉,韦青. 基于区域建模的能见度预报及影响因子分析. 气象. 2022(06): 773-782 .
    6. 朱玉祥,江剑民,赵亮,刘海文,侯美亭,李宏毅,万文龙,赵翠光. 不同计算形式的相关分析在气象中的应用综述. 热带气象学报. 2021(01): 1-13 .
    7. 付伟,司红君,何冬燕,卢尧,刘蕾,杨琼琼,邹莹瑾. 基于气候系统指数的月尺度霾日定量预测方法研究——以芜湖市为例. 大气科学学报. 2021(02): 270-278 .
    8. 王继康,谢超,张天航,张碧辉,张恒德,饶晓琴. 能见度参数化方案优化及在北京地区的应用评估. 环境工程技术学报. 2020(03): 330-337 .
    9. 毛卓成,瞿元昊,许建明,余钟奇,施春红,杨丹丹. 斜剖面图的设计及在PM_(2.5)中期潜势预报中的应用. 中国环境科学. 2020(08): 3312-3321 .
    10. 邢楠,赵玮,付宗钰,王媛媛,亢妍妍. 多元动态逐步回归方法在北京地区能见度预报中的应用. 干旱气象. 2020(04): 665-673 .
    11. 赵秀娟,李梓铭,徐敬. 霾天能见度参数化方案改进及预报效果评估. 环境科学. 2019(04): 1688-1696 .
    12. 庞金凤,刘波,张波,张朋朋,王波,曾凡江. 基于小波分解的沙尘天气发生日数预测组合模型研究——以2008—2016年策勒沙漠-绿洲过渡带沙尘天气发生时序为例. 气象. 2019(05): 651-658 .
    13. 王小辉. 城市雾霾天气监测系统设计. 实验室研究与探索. 2019(10): 71-75 .

    Other cited types(9)

Catalog

    Figures(9)  /  Tables(3)

    Article views3352 PDF downloads570 Cited by: 22
    • Received : 2017-05-14
    • Accepted : 2017-10-16
    • Published : 2018-01-30

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return