Cao Yang, Chen Hongbin, Su Debin. Identification and correction of the bright band using a C-band dual polarization weather radar. J Appl Meteor Sci, 2018, 29(1): 84-96. DOI:  10.11898/1001-7313.20180108.
Citation: Cao Yang, Chen Hongbin, Su Debin. Identification and correction of the bright band using a C-band dual polarization weather radar. J Appl Meteor Sci, 2018, 29(1): 84-96. DOI:  10.11898/1001-7313.20180108.

Identification and Correction of the Bright Band Using a C-band Dual Polarization Weather Radar

DOI: 10.11898/1001-7313.20180108
  • Received Date: 2017-06-05
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2018-01-31
  • The bright band is a layer of enhanced reflectivity due to melting of aggregated snow and ice crystals. The occurrence of a bright band causes significant overestimation in radar-based quantitative precipitation estimation (QPE). The bright band signature can be normally identified from vertical profiles of reflectivity (VPRs) of stratiform precipitation echoes and the freezing level height which is derived from radiosonde data. The VPRs correction is desirable to mitigate the bright band contamination and reduce the overestimation of the radar-based QPE. However, a well-defined bright band bottom, which is critical for the correction of bright band, is sometimes not found in VPRs. Fortunately, polarimetric variables, especially the correlation coefficient, can provide a much better depiction of vertical bright band structure than reflectivity.The volume scanning data of a C-band dual polarization radar from Beijing Meteorological Bureau, radiosonde data and measured rainfall data from ground rain gauge stations are used to test the methodology of the bright band identification and correction. Three bright band correction schemes including mean vertical profile of reflectivity (MVPR), apparent vertical profile of reflectivity (AVPR) and apparent vertical profile of correlation coefficient (AVPCC), which are derived from stratiform precipitation echoes, are applied to the reflectivity field in the given tilt, and radar-based QPEs are derived from the corrected reflectivity field based on traditional Z-R relations. Results indicate that the bright band top, peak and bottom can be easily identified from the volume scanning MVPR and the freezing level height, and most of bright band depths are between 0.8 km and 1.5 km. The AVPR and AVPCC schemes are shown to be more effective in mitigating the bright band contamination and reducing the overestimation of radar-derived QPE associated with the bright band than the MVPR correction. Corrected reflectivity fields are physically continuous in distribution, and the corrected radar-derived QPEs are close to the measured value of ground rain gauge stations.
  • Fig. 1  Mean vertical profile of reflectivity

    (a)2029 BT 4 Aug 2013, (b)2103 BT 11 Aug 2013

    Fig. 2  Time series of 0℃ isotherm height and top of bright band

    (a)4 Aug 2013, (b)11 Aug 2013

    Fig. 3  Time series of top, bottom of bright band and the height of peak reflectivity

    (a)4 Aug 2013, (b)11 Aug 2013

    Fig. 4  The PPI of correlation coefficient(a) and vertical profiles of correlation coefficient and reflectivity(b) at 3.4° elevation at 2029 BT 4 Aug 2013

    Fig. 5  PPI of reflectivity at 2.4° elevation at 2029 BT 4 Aug 2013

    (a)before correction, (b)correction by MVPR, (c)correction by AVPR, (d)correction by AVPCC

    Fig. 6  PPI of reflectivity at 2.4° elevation at 2103 BT 11 Aug 2013

    (a)before correction, (b)correction by MVPR, (c)correction by AVPR, (d)correction by AVPCC

    Fig. 7  Distribution of the reflectivity and gauges shown in Fig. 5

    (triangles and squares denote gauges affected and unaffected by bright band in low tilt, respectively; circles denote gauges affected by bright band in high tilt, which are gauges unaffected by bright band in low tilt) (a)3.4° elevation, (b)5.3° elevation

    Fig. 8  Distribution of the reflectivity and gauges shown in Fig. 6

    (triangles and squares denote gauges affected and unaffected by bright band in low tilt, respectively; circles denote gauges affected by bright band in high tilt, which are gauges unaffected by bright band in low tilt) (a)4.3° elevation, (b)6.69° elevation

    Fig. 9  Time series of reflectivity and rainfall intensity from gauge observation effected by bright band

    (a)4 Aug 2013, (b)11 Aug 2013

    Fig. 10  Scatter plot of reflectivity and rainfall intensity of gauge observation on 4 Aug 2013 and 11 Aug 2013

    Fig. 11  Scatter plot of rainfall intensity between gauge observation and radar estimation on 4 Aug 2013 and 11 Aug 2013

  • [1]
    Zhang J, Qi Y.A real-time algorithm for the correction of bright band effects in radar-derived precipitation estimation.J Hydrometeor, 2010, 11:1157-1171. doi:  10.1175/2010JHM1201.1
    [2]
    Zhang J, Qi Y, Kingsmill D, et al.Radar-based quantitative precipitation estimation for the cool season in complex terrain:Case studies from the NOAA hydrometeorology testbed.J Hydrometeor, 2012, 13:1836-1854. doi:  10.1175/JHM-D-11-0145.1
    [3]
    Qi Y, Zhang J, Zhang P, et al.VPR correction of bright band effects in radar QPEs using polarimetric radar observations.J Geophys Res Atmos, 2013, 118:3627-3633. doi:  10.1002/jgrd.50364
    [4]
    Qi Y, Zhang J, Cao Q, et al.Correction of radar QPE errors for nonuniform VPRs in mesoscale convective systems using TRMM observations.J Hydrometeor, 2013, 14:1672-1682. doi:  10.1175/JHM-D-12-0165.1
    [5]
    Hall W, Rico-Ramirez M A, Krämer S.Classification and correction of the bright band using an operational C-band polarimetric radar.J Hydrology, 2015, 15:248-258. https://www.sciencedirect.com/science/article/pii/S0022169415004242
    [6]
    金龙, 阮征, 葛润生, 等.CFMCW雷达对江淮降水云零度层亮带探测研究.应用气象学报, 2016, 27(3):312-322. doi:  10.11898/1001-7313.20160306
    [7]
    张乐坚, 程明虎, 陶岚.CINRAD-SA/SB零度层亮带识别方法.应用气象学报, 2010, 21(2):171-179. doi:  10.11898/1001-7313.20100206
    [8]
    Zhang J, Langston C, Howard K.Bright band identification based on vertical profile of reflectivity from the WSR-88D.J Atmos Oceanic Technol, 2008, 25:1859-1872. doi:  10.1175/2008JTECHA1039.1
    [9]
    程周杰, 刘宪勋, 朱亚平.双偏振雷达对一次水凝物相态演变过程的分析.应用气象学报, 2009, 20(5):594-601. doi:  10.11898/1001-7313.20090511
    [10]
    何彩芬, 黄旋旋, 卢晶晶.基于多普勒天气雷达产品的降雪及冻雨综合分析.应用气象学报, 2009, 20(6):767-771. doi:  10.11898/1001-7313.20090616
    [11]
    陈明轩, 高峰.利用一种自动识别算法移除天气雷达反射率因子中的亮带.应用气象学报, 2006, 17(2):207-214. doi:  10.11898/1001-7313.20060212
    [12]
    Sánchez-Diezma R, Zawadzki I, Sempere-Torres D.Identification of the bright band through the analysis of volumetric radar data.J Geophys Res, 2000, 105:2225-2236. doi:  10.1029/1999JD900310
    [13]
    肖艳姣, 刘黎平, 李中华, 等.雷达反射率因子数据中的亮带自动识别和抑制.高原气象, 2010, 29(1):197-205. http://d.old.wanfangdata.com.cn/Periodical/gyqx201001023
    [14]
    庄薇, 刘黎平, 胡志群.青藏高原零度层亮带的识别订正方法及在雷达估测降水中的应用.气象, 2013, 39(8):1004-1013. doi:  10.7519/j.issn.1000-0526.2013.08.007
    [15]
    孙赫敏, 张沛源, 蒋志, 等.雷达定量估测降水的亮带自动消除改进方法.大气科学学报, 2015, 38(4):492-501. https://www.cnki.com.cn/qikan-NJQX199304003.html
    [16]
    王致君, 蔡启铭, 徐宝祥.713雷达的双线偏振改装.高原气象, 1988, 7(2):177-185. http://www.oalib.com/paper/5054293
    [17]
    苏德斌, 孟庆春, 沈永海, 等.双线偏振天气雷达天线性能要求及其检测方法.高原气象, 2012, 31(3):847-861. http://www.oalib.com/paper/4181044
    [18]
    孟庆春, 沈永海, 苏德斌.双线偏振雷达双通道一致性及测试方法研究.高原气象, 2014, 33(5):1440-1447. doi:  10.7522/j.issn.1000-0534.2013.00064
    [19]
    曹俊武, 刘黎平, 陈晓辉, 等.3836 C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究.应用气象学报, 2006, 17(2):192-200. doi:  10.11898/1001-7313.20060210
    [20]
    Giangrande S E, Krause J M, Ryzhkov A V.Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar.J Appl Meteor Climatol, 2007, 47:1354-1364. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.505.3928&rep=rep1&type=pdf
    [21]
    Boodoo S, Hudak D, Donaldson N, et al.Application of dual-polarization radar melting-layer detection algorithm.J Appl Meteor Climatol, 2010, 49:1779-1793. doi:  10.1175/2010JAMC2421.1
    [22]
    曹杨, 苏德斌, 周筠珺, 等.C波段双线偏振多普勒雷达差分相位质量分析.高原气象, 2016, 35(2):548-559. doi:  10.7522/j.issn.1000-0534.2014.00154
    [23]
    曹杨, 苏德斌, 周筠珺, 等.基于双线偏振多普勒雷达识别地物回波.成都信息工程学院学报, 2014, 29(5):509-516. http://www.doc88.com/p-2773491653598.html
    [24]
    Qi Y, Zhang J, Zhang P.A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates.Q J R Meteorol Soc, 2013, 139:2233-2240. doi:  10.1002/qj.v139.677
    [25]
    吴翠红, 万玉发, 吴涛, 等.雷达回波垂直廓线及其生成方法.应用气象学报, 2006, 17(2):232-239. doi:  10.11898/1001-7313.20060215
    [26]
    肖艳娇, 刘黎平, 李中华.任意基线雷达反射率因子垂直剖面生成算法.应用气象学报, 2008, 19(4):428-434. doi:  10.11898/1001-7313.20080406
    [27]
    Chandrasekar V, Gorgucci E, Scarchilli G.Optimization of multiparameter radar estimates of rainfall.Appl Meteor, 1993, 32:1288-1293. doi:  10.1175/1520-0450(1993)032<1288:OOMREO>2.0.CO;2
    [28]
    Ruzanski E, Chandrasekar V.Nowcasting rainfall fields derived from specific differential phase.J Appl Meteor Climatol, 2012, 51(11):1950-1959. doi:  10.1175/JAMC-D-11-081.1
  • 加载中
  • -->

Catalog

    Figures(11)

    Article views (4497) PDF downloads(435) Cited by()
    • Received : 2017-06-05
    • Accepted : 2017-10-09
    • Published : 2018-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint