Yu Zhenshou, Ji Chunxiao, Yang Chen, et al. Impacts of assimilating wind profiler radar observations on precipitation prediction in Zhejiang Province. J Appl Meteor Sci, 2018, 29(1): 97-110. DOI:  10.11898/1001-7313.20180109.
Citation: Yu Zhenshou, Ji Chunxiao, Yang Chen, et al. Impacts of assimilating wind profiler radar observations on precipitation prediction in Zhejiang Province. J Appl Meteor Sci, 2018, 29(1): 97-110. DOI:  10.11898/1001-7313.20180109.

Impacts of Assimilating Wind Profiler Radar Observations on Precipitation Prediction in Zhejiang Province

DOI: 10.11898/1001-7313.20180109
  • Received Date: 2017-06-30
  • Rev Recd Date: 2017-10-09
  • Publish Date: 2018-01-31
  • Wind profiler radar (WPR) is a new type of wind measuring radar, which has advantages of high spatial resolution, continuity and good instantaneity. With the increase of wind profile radar year by year, it is meaningful to apply this kind of wind field observations to the numerical model to improve the model prediction ability. The meso-scale numerical prediction model WRF and the assimilation system ADAS developed by Center for Analysis and Prediction of Storms, University of Oklahoma, is used to study effects of assimilating observations of 35 wind profiler radars in eastern China on precipitation prediction over Zhejiang. Prior to assimilation, 1 h average sampling product data are subjected to climate extreme inspection, consistency check and vertical thinning for quality control. A spring rainstorm process on 16-17 May 2014 is selected as an example to evaluate effects of WPR data assimilation on the quality of precipitation forecast in detail. And effects of WPR data are also verified by batch experiments starting from 0000 UTC and 1200 UTC during the whole June of 2015. Results show that the model precipitation TS and ETS scores are improved, especially for heavy rainfalls. At the same time, the false alarm ratio (FAR) and frequency of misses (FOM) for heavy and torrential rain decrease after WPR data assimilation, but the FAR of moderate rain increase. The case study shows that WPR data assimilation can adjust the initial field of low layer wind field, increase small scale weather information, and improve the horizontal wind prediction on the whole layers. For 12 h wind forecast field, the result of assimilation of WPR is obviously better than that without the assimilation. In addition, the improvement of the zonal wind is more obvious than that of the meridional wind after WPR data assimilation. The case study shows that 850 hPa wind speed is enhanced by 20%-30%, water vapor flux is increased by 30%-50%, and the atmospheric instability in the rainstorm area and its upstream region is also enhanced after WPR data assimilation. As a result, TS of light rain and heavy rain is increased by 0.06-0.07, and FAR and FOM of rainstorm is reduced by 0.04-0.05. Although the assimilation of wind profiler data can improve the precipitation prediction quality, there are still some problems, such as an unexplained overestimation of regional average precipitation, which needs further investigation.
  • Fig. 1  Simulated model domains and wind profile radar with radiosonde stations

    Fig. 2  24 h accumulated precipitation(the shaded) in Zhejiang Province from 0000 UTC 16 May to 0000 UTC 17 May in 2014

    (a)observation(the countor denotes 1 h accumulated precipitation from 1500 UTC 16 May to 1600 UTC 16 May in 2014, unit: mm), (b)WPRDA, (c)CTL

    Fig. 3  Assessment of radar wind profile data assimilation on the simulated 24 h accumulated precipitation in Zhejiang Province from 0000 UTC 16 May to 0000 UTC 17 May in 2014

    Fig. 4  The initial field difference at 850 hPa between WPRDA and CTL

    (a)zonal wind(the contour, unit:m·s-1) and vorticity(the shaded, unit:10-5 s-1)(the long dashed line rectangle box denotes the rainstorm area over Zhejiang Province, and the solid line rectangle box denotes the upstream area), (b)meridional wind(the contour, unit:m·s-1) and divergence(the shaded, unit:10-5 s-1)

    Fig. 5  The initial wind field(the vector) and water vapor flux(the shaded, unit:g·(cm·hPa·s)-1) at 850 hPa

    (a)WPRDA, (b)CTL

    Fig. 6  Comparisons between the simulated initial horizontal wind profiles and the observation

    (a)zonal wind at Hangzhou, (b)meridional wind at Hangzhou, (c)zonal wind at Quzhou, (d)meridional wind at Quzhou

    Fig. 7  Comparisons between 12 h forecast horizontal wind profiles and the observation

    (a)zonal wind at Hangzhou, (b)meridional wind at Hangzhou, (c)zonal wind at Quzhou, (d)meridional wind at Quzhou

    Fig. 8  The simulated 1 h accumulated precipitation in Zhejiang Province from 1500 UTC 16 May to 1600 UTC 16 May in 2014

    (the triangle represents the center of maximum rainfall) (a)WPRDA, (b)CTL

    Fig. 9  The vertical section along the red slash line shown in Fig. 8a at 1500 UTC 16 May 2014

    (a)the equivalent temperature(the black isoline, unit:K) and relative humidity(the shaded) of WPRDA, (b)the equivalent temperature(the black isoline, unit:K) and relative humidity(the shaded) of CTL, (c)the vertical section of rain water, cloud water, cloud ice, snow and graupel with 0℃, -20℃ layer height of WPRDA, (d)the vertical section of rain water, cloud water, cloud ice, snow and graupel with 0℃, -20℃ layer height of CTL

    Fig. 10  Evaluation of regional average rainfall in Zhejiang Province by batch experiments from 1 Jun to 30 Jun in 2015

    (a)Zhejiang regional average daily precipitation simulated by CTL00 and WPRDA00 with the observation, (b)Zhejiang regional average daily precipitation simulated by CTL12 and WPRDA12 with the observation, (c)TS and ETS of CTL00 and WPRDA00 forecasts, (d)TS and ETS of CTL12 and WPRDA12 forecasts, (e)FAR and FOM of CTL00 and WPRDA00 forecasts, (f)FAR and FOM of CTL12 and WPRDA12 forecasts

    Fig. 11  Evaluation of precipitation forecast by BWPRDA and BCTL from 1 Jun to 30 Jun in 2015

    Table  1  Design for comparative WPR assimilation experiments

    试验类型 各试验设计描述
    控制试验CTL 针对2014年5月16—17日发生在浙江的一次暴雨过程,不同化任何观测资料,直接采用NCEP GFS提供的预报场作为WRF初始场和侧边界场,不同化任何观测资料,从5月16日00:00(世界时,下同)启动,积分24 h,称该试验为CTL
    同化试验WPRDA 试验中其他条件同CTL,只是增加了同化中国东部地区35部风廓线雷达资料(图 1),称该试验为WPRDA
    批量控制试验
    BCTL
    针对2015年6月1—30日用NCEP GFS预报场作为WRF的初始场和侧边界场,不同化任何观测资料,从00:00和12:00开始积分24 h的试验, 分别称为CTL00和CTL12,CTL00和CTL12合并称为BCTL
    批量同化试验
    BWPRDA
    试验中其他条件同CTL00和CTL12,只是增加了同化中国东部地区35部风廓线雷达资料,试验对应称为WPRDA00和WPRDA12,WPRDA00和WPRDA12合并称为BWPRDA
    DownLoad: Download CSV
  • [1]
    何平.相控阵风廓线雷达.北京:气象出版社, 2006.
    [2]
    何平, 朱小燕, 阮征, 等.风廓线雷达探测降水过程的初步研究.应用气象学报, 2009, 20(4):465-470. doi:  10.11898/1001-7313.200904011
    [3]
    郭虎, 王令, 时少英, 等.国庆60周年演练中一次降水过程的短时预报服务.气象, 2010, 36(10):21-28. doi:  10.7519/j.issn.1000-0526.2010.10.004
    [4]
    王令, 王国荣, 孙秀忠, 等.应用多种探测资料对比分析两次突发性局地强降水.气象, 2012, 38(3):281-290. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=qxxx201203005&dbname=CJFD&dbcode=CJFQ
    [5]
    王志春, 植石群, 丁凌云.强台风纳沙(1117)近地层风特性观测分析.应用气象学报, 2013, 24(5):595-605. doi:  10.11898/1001-7313.20130509
    [6]
    汪学渊, 李栋, 任雍, 等.风廓线雷达资料在台风苏拉登陆过程中的应用初探.气象, 2013, 39(11):1431-1436. doi:  10.7519/j.issn.1000-0526.2013.11.006
    [7]
    蒋德海, 王成刚, 吴兑, 等.利用风廓线雷达资料对广州地区边界层日变化特征的分析研究.热带气象学报, 2013, 29(1):129-135. http://www.cmsjournal.net/qxxb_cn/ch/reader/create_pdf.aspx?file_no=2015015&flag=1&journal_id=qxxb_cn&year_id=2015
    [8]
    李峰, 施红蓉.一次多相态天气过程的风廓线雷达探测资料特征分析.气象, 2014, 40(8):992-999. http://www.oalib.com/paper/4964837
    [9]
    陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. doi:  10.11898/1001-7313.20160308
    [10]
    Lehmiller G S, Bluestein H B, Neiman P J, et al.Wind structure in a supercell thunderstorm as measured by a UHF wind profiler.Mon Wea Rev, 2001, 129:1968-1986. doi:  10.1175/1520-0493(2001)129<1968:WSIAST>2.0.CO;2
    [11]
    Kitzmiller D H, Mcgovern W E.Wind profiler observations preceding outbreaks of large hail over Northeastern Colorado.Wea Forecasting, 1990, 5:78-88. doi:  10.1175/1520-0434(1990)005<0078:WPOPOO>2.0.CO;2
    [12]
    刘淑媛, 郑永光, 陶祖钰.利用风廓线雷达资料分析低空急流的脉动与暴雨关系.热带气象学报, 2003, 19(3):285-290. http://www.cqvip.com/qk/92292a/2003003/8166298.html
    [13]
    董保举, 刘劲松, 高月忠.基于风廓线雷达资料的暴雨天气过程分析.气象科技, 2009, 37(4):411-414. http://d.old.wanfangdata.com.cn/Periodical/qxkj200904005
    [14]
    单楠, 何平, 吴蕾.风廓线雷达反演温度平流的应用.应用气象学报, 2016, 27(3):323-333. doi:  10.11898/1001-7313.20160307
    [15]
    孙康远, 阮征, 魏鸣, 等.风廓线雷达反演大气比湿廓线的初步试验.应用气象学报, 2013, 24(4):407-415. doi:  10.11898/1001-7313.20130403
    [16]
    阮征, 葛润生, 吴志根.风廓线仪探测降水云体结构方法的研究.应用气象学报, 2002, 13(3):330-338. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20020343&flag=1
    [17]
    邓闯, 阮征, 魏鸣, 等.风廓线雷达测风精度评估.应用气象学报, 2012, 23(5):523-533. doi:  10.11898/1001-7313.20120502
    [18]
    高祝宇, 阮征, 魏鸣, 等.风廓线雷达数据质量影响因子及处理算法.应用气象学报, 2016, 27(2):148-159. doi:  10.11898/1001-7313.20160203
    [19]
    张旭斌, 万齐林, 薛纪善, 等.风廓线雷达资料质量控制及其同化应用.气象学报, 2015, 73(1):159-176. doi:  10.11676/qxxb2015.015
    [20]
    谭晓伟, 徐枝芳, 龚建东.风廓线雷达资料对GRAPES_MESO数值预报系统影响的初步研究.气象, 2016, 42(1):26-33. doi:  10.7519/j.issn.1000-0526.2016.01.003
    [21]
    李红莉, 赖安伟, 周志敏. 风廓线雷达资料同化在中尺度数值预报中的应用研究//第30届中国气象学会论文集. 2013.
    [22]
    朱立娟.面向资料同化风廓线雷达水平风产品质量初步分析.气象, 2015, 41(12):1494-1502. doi:  10.7519/j.issn.1000-0526.2015.12.007
    [23]
    Xue M, Wang D H, Gao J D, et al.The Advanced Regional Prediction System(ARPS), storm-scale numerical weather prediction and data assimilation.Meteor Atmos Physics, 2003, 82:139-170. doi:  10.1007/s00703-001-0595-6
    [24]
    金巍, 曲岩, 姚秀萍, 等.一次大暴雨过程中低空急流演变与强降水的关系.气象, 2007, 33(12):31-38. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_qx200712005
    [25]
    Huang Y J, Cui X P.Dominant cloud microphysical processes of a torrential rainfall event in Sichuan, China.Adv Atmos Sci, 2015, 32(3):389-400. doi:  10.1007/s00376-014-4066-7
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (3861) PDF downloads(510) Cited by()
    • Received : 2017-06-30
    • Accepted : 2017-10-09
    • Published : 2018-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint