[1]
|
|
[2]
|
|
[3]
|
|
[4]
|
|
[5]
|
|
[6]
|
Wu C, Gonsamo A, Gough C M, et al.Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS. Remote Sensing of Environment, 2014, 147:79-88. doi: 10.1016/j.rse.2014.03.001
|
[7]
|
Hill M J, Donald G E.Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote Sensing of Environment, 2003, 84(3):367-384. doi: 10.1016/S0034-4257(02)00128-1
|
[8]
|
Sakamoto T, Gitelson A A, Arkebauer T J.MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sensing of Environment, 2013, 131:215-231. doi: 10.1016/j.rse.2012.12.017
|
[9]
|
MacBean N, Maignan F, Peylin P, et al.Using satellite data to improve the leaf phenology of a global terrestrial biosphere model. Biogeosciences, 2015, 12(23):7185-7208. doi: 10.5194/bg-12-7185-2015
|
[10]
|
|
[11]
|
|
[12]
|
|
[13]
|
|
[14]
|
Gallo K P, Flesch T K.Large-area crop monitoring with the NOAA AVHRR:Estimating the silking stage of corn development. Remote Sensing of Environment, 1989, 27(1):73-80. doi: 10.1016/0034-4257(89)90038-2
|
[15]
|
Hmimina G, Dufrêne E, Pontailler J Y, et al.Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes:An investigation using ground-based NDVI measurements. Remote Sensing of Environment, 2013, 132:145-158. doi: 10.1016/j.rse.2013.01.010
|
[16]
|
Kandasamy S, Fernandes R.An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms:Application to 20-year NOAA AVHRR data over Canada. Remote Sensing of Environment, 2015, 164:114-129. doi: 10.1016/j.rse.2015.04.014
|
[17]
|
Verger A, Filella I, Baret F, et al.Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sensing of Environment, 2016, 178:1-14. doi: 10.1016/j.rse.2016.02.057
|
[18]
|
Zhou J, Jia L, Menenti M.Reconstruction of global MODIS NDVI time series:Performance of harmonic analysis of time series (HANTS). Remote Sensing of Environment, 2015, 163:217-228. doi: 10.1016/j.rse.2015.03.018
|
[19]
|
Hird J N, McDermid G J.Noise reduction of NDVI time series:An empirical comparison of selected techniques. Remote Sensing of Environment, 2009, 113(1):248-258. doi: 10.1016/j.rse.2008.09.003
|
[20]
|
Atkinson P M, Jeganathan C, Dash J, et al.Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 2012, 123:400-417. doi: 10.1016/j.rse.2012.04.001
|
[21]
|
Geng L, Ma M, Wang X, et al.Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River Basin, China. Remote Sensing, 2014, 6(3):2024-2049. doi: 10.3390/rs6032024
|
[22]
|
Michishita R, Jin Z, Chen J, et al.Empirical comparison of noise reduction techniques for NDVI time-series based on a new measure. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91:17-28. doi: 10.1016/j.isprsjprs.2014.01.003
|
[23]
|
Qiu B, Feng M, Tang Z.A simple smoother based on continuous wavelet transform:Comparative evaluation based on the fidelity, smoothness and efficiency in phenological estimation. International Journal of Applied Earth Observation and Geoinformation, 2016, 47:91-101. doi: 10.1016/j.jag.2015.11.009
|
[24]
|
Pan Z, Huang J, Zhou Q, et al.Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observation and Geoinformation, 2015, 34:188-197. doi: 10.1016/j.jag.2014.08.011
|
[25]
|
|
[26]
|
|
[27]
|
|
[28]
|
|
[29]
|
Jonsson P, Eklundh L.Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1824-1832. doi: 10.1109/TGRS.2002.802519
|
[30]
|
|
[31]
|
|
[32]
|
Sakamoto T, Wardlow B D, Gitelson A A, et al.A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data. Remote Sensing of Environment, 2010, 114(10):2146-2159. doi: 10.1016/j.rse.2010.04.019
|
[33]
|
|