Li Ying, Chen Huailiang, Li Yaohui, et al. A method for summer maize phenology monitoring by MODIS data. J Appl Meteor Sci, 2018, 29(1): 111-119. DOI:  10.11898/1001-7313.20180110.
Citation: Li Ying, Chen Huailiang, Li Yaohui, et al. A method for summer maize phenology monitoring by MODIS data. J Appl Meteor Sci, 2018, 29(1): 111-119. DOI:  10.11898/1001-7313.20180110.

A Method for Summer Maize Phenology Monitoring by MODIS Data

DOI: 10.11898/1001-7313.20180110
  • Received Date: 2017-05-24
  • Rev Recd Date: 2017-09-26
  • Publish Date: 2018-01-31
  • Crop phenology period is an important feature of the agricultural eco-system. It is important to investigate the crop phenology period in large area for precision crop management and yield forecast by remote sensing technical. However, there are still some limitations in this approach, such as the investigation precision is restricted by the investigation area, and different types of crop growth curves don't match with the crop phenology period very well.Therefore, data from moderate-resolution imaging spectroradiometer (MODIS), and summer maize growth stages by field observations from 23 agricultural meteorological stations in Henan Province are adopted to improve the identification efficiency and accuracy. Normalized difference vegetation index (NDVI) growth curve with the time resolution of 1 d is reconstructed by denoising, smooth processing and logistic curve fitting. Crop growth feature points on the reconstructed growth curve are extracted by using dynamic threshold method and curvature extremum method. The optimum matching relationship between feature points and maize growth stages is constructed by based on the feature points, their occurrence date, and observed dates of growth stages. By matching with the investigated growth stage dates in 2013-2014, values of dynamic threshold 1 is chosen to extract the 7-leaf stage, with the root mean square error (RMSE) of 5.4 d. Values of minimum curvature is chosen to extract the jointing stage, with the RMSE of 6.4 d. Values of dynamic threshold 2 is chosen to extract the tasseling stage, with the RMSE of 6.0 d. By validation with the investigated growth stage dates in 2015, RMSE with the selected 3 key growth stages are all less than 6 d. The accuracy is higher than the earlier proposed methods to extract maize growth stages by using MODIS or other similar lower/medium spatial resolution remote sensing data. Map of summer maize critical phenology in Henan Province demonstrates that most of summer maize in the research areas enter 7-leaf stage, jointing stage and tasseling stage in June 25 to 27 June, 10 July to 17 July and 27 July to 2 August, respectively. Numbers of pixels, which enter 7-leaf stage, jointing stage and tasseling stage on the above-mentioned dates, account for 45.6%, 66.8% and 71% of the total, respectively. Maize growth stages obtained by the method proposed by this research can be used in crop management and grain yield forecast.
  • Fig. 1  The distribution of agricultural meteorological observation stations in Henan Province

    Fig. 2  Curve feature point extraction using two methods

    (a)dynamic threshold method, (b)curvature method

    Fig. 3  Error distribution between extracted and observed maize entered growth stages in each site in 2015

    Fig. 4  Dates of summer maize entered key growth stages monitored by using time-series MODIS NDVI data in 2015

    (a)seven-leaf, (b)jointing, (c)tasseling

    Table  1  Root mean square error between feature points and maize phenology in 2013 and 2014(unit: d)

    物候期 动态阈值1 动态阈值2 曲率最大值1 曲率最小值 曲率最大值2
    播种期 23.0 54.3 29.0 38.6 48.2
    出苗期 16.9 48.0 22.8 32.3 42.0
    三叶期 12.6 43.6 18.4 27.9 37.5
    七叶期 5.4 32.4 8.2 16.9 26.4
    拔节期 15.0 19.2 9.6 6.4 13.5
    抽雄期 32.0 6.0 25.9 16.5 8.2
    开花期 33.4 6.4 27.3 17.9 9.4
    吐丝期 34.5 6.9 28.4 19.0 10.4
    乳熟期 57.0 26.3 50.9 41.4 32.0
    成熟期 79.8 48.6 73.7 64.0 54.5
    DownLoad: Download CSV
  • [1]
    穆佳, 赵俊芳, 郭建平.近30年东北春玉米发育期对气候变化的响应.应用气象学报, 2014, 25(6):680-689. doi:  10.11898/1001-7313.20140604
    [2]
    吴玮, 景元书, 马玉平, 等.干旱环境下夏玉米各生育时期光响应特征.应用气象学报, 2013, 24(6):723-730. doi:  10.11898/1001-7313.20130609
    [3]
    陈怀亮, 李颖, 张红卫.农作物长势遥感监测业务化应用与研究进展.气象与环境科学, 2015, 38(1):95-102. https://www.wenkuxiazai.com/doc/5a7f2e3e856a561253d36f2a.html
    [4]
    何勇, 董文杰, 严晓瑜.基于MODIS的我国北方农牧交错带植被生长特征.应用气象学报, 2008, 19(6):716-721. doi:  10.11898/1001-7313.20080611
    [5]
    王圆圆, 扎西央宗.利用条件植被指数评价西藏植被对气象干旱的响应.应用气象学报, 2016, 27(4):435-444. doi:  10.11898/1001-7313.20160406
    [6]
    Wu C, Gonsamo A, Gough C M, et al.Modeling growing season phenology in North American forests using seasonal mean vegetation indices from MODIS.Remote Sensing of Environment, 2014, 147:79-88. doi:  10.1016/j.rse.2014.03.001
    [7]
    Hill M J, Donald G E.Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series.Remote Sensing of Environment, 2003, 84(3):367-384. doi:  10.1016/S0034-4257(02)00128-1
    [8]
    Sakamoto T, Gitelson A A, Arkebauer T J.MODIS-based corn grain yield estimation model incorporating crop phenology information.Remote Sensing of Environment, 2013, 131:215-231. doi:  10.1016/j.rse.2012.12.017
    [9]
    MacBean N, Maignan F, Peylin P, et al.Using satellite data to improve the leaf phenology of a global terrestrial biosphere model.Biogeosciences, 2015, 12(23):7185-7208. doi:  10.5194/bg-12-7185-2015
    [10]
    张宏群, 杨元建, 荀尚培, 等.安徽省植被和地表温度季节变化及空间分布特征.应用气象学报, 2011, 22(2):232-240. doi:  10.11898/1001-7313.20110212
    [11]
    陈怀亮, 徐祥德, 杜子璇, 等.黄淮海地区植被活动对气候变化的响应特征.应用气象学报, 2009, 20(5):513-520. doi:  10.11898/1001-7313.20090501
    [12]
    陈燕丽, 龙步菊, 潘学标, 等.基于MODIS NDVI和气候信息的草原植被变化监测.应用气象学报, 2010, 21(2):229-236. doi:  10.11898/1001-7313.20100213
    [13]
    王开存, 陈长和, 郭铌.用NOAA/AVHRR探测地表反射率和NDVI的订正及误差分析.应用气象学报, 2003, 14(2):165-175. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20030221&flag=1
    [14]
    Gallo K P, Flesch T K.Large-area crop monitoring with the NOAA AVHRR:Estimating the silking stage of corn development.Remote Sensing of Environment, 1989, 27(1):73-80. doi:  10.1016/0034-4257(89)90038-2
    [15]
    Hmimina G, Dufrêne E, Pontailler J Y, et al.Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes:An investigation using ground-based NDVI measurements.Remote Sensing of Environment, 2013, 132:145-158. doi:  10.1016/j.rse.2013.01.010
    [16]
    Kandasamy S, Fernandes R.An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms:Application to 20-year NOAA AVHRR data over Canada.Remote Sensing of Environment, 2015, 164:114-129. doi:  10.1016/j.rse.2015.04.014
    [17]
    Verger A, Filella I, Baret F, et al.Vegetation baseline phenology from kilometric global LAI satellite products.Remote Sensing of Environment, 2016, 178:1-14. doi:  10.1016/j.rse.2016.02.057
    [18]
    Zhou J, Jia L, Menenti M.Reconstruction of global MODIS NDVI time series:Performance of harmonic analysis of time series (HANTS).Remote Sensing of Environment, 2015, 163:217-228. doi:  10.1016/j.rse.2015.03.018
    [19]
    Hird J N, McDermid G J.Noise reduction of NDVI time series:An empirical comparison of selected techniques.Remote Sensing of Environment, 2009, 113(1):248-258. doi:  10.1016/j.rse.2008.09.003
    [20]
    Atkinson P M, Jeganathan C, Dash J, et al.Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology.Remote Sensing of Environment, 2012, 123:400-417. doi:  10.1016/j.rse.2012.04.001
    [21]
    Geng L, Ma M, Wang X, et al.Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe River Basin, China.Remote Sensing, 2014, 6(3):2024-2049. doi:  10.3390/rs6032024
    [22]
    Michishita R, Jin Z, Chen J, et al.Empirical comparison of noise reduction techniques for NDVI time-series based on a new measure.ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91:17-28. doi:  10.1016/j.isprsjprs.2014.01.003
    [23]
    Qiu B, Feng M, Tang Z.A simple smoother based on continuous wavelet transform:Comparative evaluation based on the fidelity, smoothness and efficiency in phenological estimation.International Journal of Applied Earth Observation and Geoinformation, 2016, 47:91-101. doi:  10.1016/j.jag.2015.11.009
    [24]
    Pan Z, Huang J, Zhou Q, et al.Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data.International Journal of Applied Earth Observation and Geoinformation, 2015, 34:188-197. doi:  10.1016/j.jag.2014.08.011
    [25]
    刘珺, 田庆久, 黄彦, 等.黄淮海夏玉米物候期遥感监测研究.遥感信息, 2013, 28(3):85-90. doi:  10.3969/j.issn.1000-3177.2013.03.015
    [26]
    李颖, 刘荣花, 郑东东.基于多源数据和决策树估算夏玉米种植面积.中国农业气象, 2014, 35(3):344-348. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201403017
    [27]
    李颖, 李耀辉, 王金鑫.夏玉米生长过程曲线重建研究——以鹤壁市为例.气象与环境科学, 2016, 39(4):7-13. http://d.old.wanfangdata.com.cn/Periodical/hnqx201604002
    [28]
    李秋元, 孟德顺.Logistic曲线的性质及其在植物生长分析中的应用.西北林学院学报, 1993, 8(3):81-86. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xblx199303013&dbname=CJFD&dbcode=CJFQ
    [29]
    Jonsson P, Eklundh L.Seasonality extraction by function fitting to time-series of satellite sensor data.IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8):1824-1832. doi:  10.1109/TGRS.2002.802519
    [30]
    张明伟. 基于MODIS数据的作物物候期监测及作物类型识别模式研究. 武汉: 华中农业大学, 2006. http://cdmd.cnki.com.cn/Article/CDMD-10504-2006190161.htm
    [31]
    权文婷, 周辉, 李红梅, 等.基于S-G滤波的陕西关中地区冬小麦生育期遥感识别和长势监测.中国农业气象, 2015, 36(1):93-99. https://www.wenkuxiazai.com/doc/b7fdea204afe04a1b171de78.html
    [32]
    Sakamoto T, Wardlow B D, Gitelson A A, et al.A two-step filtering approach for detecting maize and soybean phenology with time-series MODIS data.Remote Sensing of Environment, 2010, 114(10):2146-2159. doi:  10.1016/j.rse.2010.04.019
    [33]
    杨浩, 黄文江, 王纪华, 等.基于HJ-1A/1BCCD时间序列影像的水稻生育期监测.农业工程学报, 2011, 27(4):219-224. http://edu.wanfangdata.com.cn/Periodical/Detail/dlkxjz201510011
  • 加载中
  • -->

Catalog

    Figures(4)  / Tables(1)

    Article views (4374) PDF downloads(500) Cited by()
    • Received : 2017-05-24
    • Accepted : 2017-09-26
    • Published : 2018-01-31

    /

    DownLoad:  Full-Size Img  PowerPoint