Zhang Bo, Jin Ronghua, Zhao Bin, et al. A circulation index of the spring persistent rainfall in the south of the Yangtze and its synoptic characteristics. J Appl Meteor Sci, 2018, 29(2): 129-140. DOI:  10.11898/1001-7313.20180201.
Citation: Zhang Bo, Jin Ronghua, Zhao Bin, et al. A circulation index of the spring persistent rainfall in the south of the Yangtze and its synoptic characteristics. J Appl Meteor Sci, 2018, 29(2): 129-140. DOI:  10.11898/1001-7313.20180201.

A Circulation Index of the Spring Persistent Rainfall in the South of the Yangtze and Its Synoptic Characteristics

DOI: 10.11898/1001-7313.20180201
  • Received Date: 2017-08-22
  • Rev Recd Date: 2018-01-15
  • Publish Date: 2018-03-31
  • Using daily precipitation dataset of 2466 stations over China, daily and monthly reanalysis dataset from 1961 to 2016 by National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), a circulation index of spring persistent rainfall (ISPR) is defined based on latitudinal differences of zonal winds in lower troposphere over the region from East Asia to the western Pacific. Relationships of ISPR with spring persistent rainfall and general circulation is investigated. Results show that the westerly wind from the South of the Yangtze to South China and the easterly wind located in the region from Huanghuai to Jianghuai area in spring is beneficial to the spring persistent rainfall in the South of the Yangtze. Using this characteristic, the spring rainfall circulation index in the South of the Yangtze is defined. In high-index cases, rainfall increases in the South of the Yangtze; and in low-index cases, rainfall decreases. Meanwhile, the index defined not only reflect the annual variation of the spring persistent rainfall, but also can reflect the daily variation of the spring persistent rainfall. The index has good synoptic significance, and is positively correlated with the daily precipitation in the South of the Yangtze. A verification using data from 1961 to 2016 in the South of the Yangtze indicates that this definition of index can reflect the precipitation in most years in the South of the Yangtze in spring. Taking the year of 2016 as an example, results show that the index defined has a clear physical meaning. In high-index cases, the plateau trough and the southern branch of westerly trough are more active. The western Pacific high moves northward anomalously. Confluence of the southwesterly wind from the low trough, the western Pacific high and the cold air from the higher latitude occur from the South of the Yangtze to South China. Low level convergence and high level divergence provide dynamic uplifting conditions for spring persistent rainfall in the South of the Yangtze. In low-index cases, the western Pacific high moves southward anomalously, and anticyclone anomalies cover the mainland of China. The existence of weak divergence in the lower troposphere in the South of the Yangtze to South China goes against persistent rainfall.
  • Fig. 1  Mean daily precipitation(the shaded) and its variance distribution(the contour, unit:mm2) in the southeast of China in the spring persistent rainfall period from 1961 to 2016

    Fig. 2  Correlation of spring persistent rainfall to 850 hPa zonal wind from 1961 to 2016

    (the shaded denotes passing the test of 0.05 level)

    Fig. 3  Variations of the regional mean daily precipitation(the histogram) in the South of the Yangtze and standardized series of ISPR in the spring persisteat rainfall period(the line) from 1961 to 2016

    Fig. 4  Correlation of daily ISPR to precipitation from 1 Mar to 15 May during 1961-2016

    (the shaded denotes passing the test of 0.01 level)

    Fig. 5  Correlation of ISPR to 850 hPa zonal wind from 1 Mar to 15 May during 1961-2016

    (the shaded denotes passing the test of 0.01 level)

    Fig. 6  Daily precipitation anomalies in the southeast of China from 1 Mar to 15 May in 2011(a) and in 2016(b)(unit:mm)

    Fig. 7  Regional mean daily precipitation(the histogram) in the South of the Yangtze and daily ISPR(the line) in spring of 2011(a) and 2016(b)

    Fig. 8  Precipitation difference in high-and low-index days of 2016(unit:mm)

    (the shaded denotes passing the test of 0.05)

    Fig. 9  Composite analysis of the wind(the vector) and divergence(the contour, unit:10-6 s-1) anomalies (a)at 850 hPa in high-index cases, (b)at 850 hPa in low-index cases, (c)at 500 hPa in high-index cases, (d)at 500 hPa in low-index cases, (e)at 200 hPa in high-index cases, (f)at 200 hPa in low-index cases

    Fig. 10  Composite analysis of the pseudo-equivalent potential temperature(the solid line, unit:K), temperature(the dashed line, unit:K), vertical circulation(the vector) and divergence(the shaded) in high-index cases(a) and low-index cases(b) along 110°-120°E

    Table  1  Correlation of daily ISPR to precipitation in the South of the Yangtze from 1 Mar to 15 May during 1961-2016

    年份 相关系数
    1961 0.56
    1962 0.62
    1963 0.46
    1964 0.34
    1965 0.64
    1966 0.59
    1967 0.48
    1968 0.61
    1969 0.57
    1970 0.62
    1971 0.49
    1972 0.63
    1973 0.48
    1974 0.51
    1975 0.42
    1976 0.33
    1977 0.53
    1978 0.51
    1979 0.42
    1980 0.61
    1981 0.31
    1982 0.22
    1983 0.26
    1984 0.58
    1985 0.32
    1986 0.33
    1987 0.23
    1988 0.36
    1989 0.38
    1990 0.30
    1991 0.15
    1992 0.44
    1993 0.29
    1994 0.26
    1995 0.14
    1996 0.49
    1997 0.35
    1998 0.39
    1999 0.33
    2000 0.59
    2001 0.41
    2002 0.22
    2003 0.32
    2004 0.35
    2005 0.36
    2006 0.39
    2007 0.16
    2008 0.60
    2009 0.15
    2010 0.37
    2011 0.58
    2012 0.58
    2013 0.59
    2014 0.46
    2015 0.34
    2016 0.46
    DownLoad: Download CSV
  • [1]
    李麦村, 潘菊芳, 田生春, 等.春季连续低温阴雨天气的预报方法.北京:科学出版社, 1977:3-4. http://www.oalib.com/paper/4179795
    [2]
    吴宝俊, 彭治班.江南岭北春季连阴雨研究进展.科技通报, 1996, 12(2):65-70. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB602.000.htm
    [3]
    刘宣飞, 袁旭.江南春雨的两个阶段及其降水性质.热带气象学报, 2013, 29(1):99-105. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdqxxb201301012
    [4]
    Tian S F, Yasunari T.Climatological aspects and mechanism of spring persistent rains over central China.J Meteor Soc Japan, 1998, 76(1):57-71. doi:  10.2151/jmsj1965.76.1_57
    [5]
    陈绍东, 王谦谦, 钱永甫.江南汛期降水基本气候特征及其与海温异常关系初探.热带气象学报, 2003, 19(3):260-268. http://www.cqvip.com/QK/92292A/2003003/8166247.html
    [6]
    万日金, 吴国雄.江南春雨的时空分布.气象学报, 2008, 66(3):310-319. doi:  10.11676/qxxb2008.029
    [7]
    万日金, 吴国雄.江南春雨的气候成因机制研究.中国科学(D辑), 2006, 36(10):936-950. http://www.docin.com/p-678157827.html
    [8]
    晏红明, 王灵, 李蕊.1-3月欧亚大陆热力变化及其与中国降水的关系.应用气象学报, 2016, 27(2):209-219. doi:  10.11898/1001-7313.20160209
    [9]
    袁佳双, 郑庆林.西北太平洋冷还问对东亚初夏大气环流影响的数值研究.应用气象学报, 2006, 17(3):310-315. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060355&flag=1
    [10]
    王澄海, 王式功, 杨德保, 等.中国西北春季降水与太平洋海温讷的相关特征.应用气象学报, 2001, 12(3):383-384. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010350&flag=1
    [11]
    林建, 何金海.海温分布型对长江中下游旱涝的影响.应用气象学报, 2000, 11(3):339-347. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20000350&flag=1
    [12]
    杨明, 徐海明, 李维亮, 等.近40年东亚季风变化特征及其与海陆温差关系.应用气象学报, 2008, 19(5):522-530. doi:  10.11898/1001-7313.20080502
    [13]
    尚可, 詹丰兴, 何金海, 等.前期夏季西太平洋暖池热含量对江南春雨的影响及其可能机理.海洋学报, 2014, 36(1):86-97. http://www.oalib.com/paper/4848179
    [14]
    尚可, 何金海, 朱志伟, 等.西太平洋暖池区热含量和海表温度与江南春雨的相关性对比研究.地理科学, 2013, 33(8):986-992. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201308014.htm
    [15]
    李超, 徐海明, 朱素行, 等.江南春雨形成机制的数值模拟.高原气象, 2010, 29(1):99-108. http://www.cqvip.com/QK/91655X/201001/33035341.html
    [16]
    张博, 钟珊珊, 赵滨, 等.春季西太平洋海表面温度对我国江南春雨的影响.应用气象学报, 2011, 22(1):57-65. doi:  10.11898/1001-7313.20110106
    [17]
    陈隆勋, 李薇, 赵平, 等.东亚地区夏季风爆发过程.气候与环境研究, 2000, 5(4):345-355. http://d.wanfangdata.com.cn/Periodical_rdqxxb201405015.aspx
    [18]
    陈隆勋, 张博, 张瑛.东亚季风研究的进展.应用气象学报, 2006, 17(6):711-724. doi:  10.11898/1001-7313.20060609
    [19]
    张庆云, 陶诗言.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报, 1998, 9(增刊Ⅰ):17-23. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=200606120&flag=1
    [20]
    万日金, 赵兵科, 侯依玲.江南春雨的年际变率及其影响因子分析.高原气象, 2008, 27(增刊Ⅰ):118-123. http://www.oalib.com/paper/4179795
    [21]
    Zhang R H, A Sumi, M. Kimoto.Impact of El Nio on the East Asian monsoon:A diagnostic study of the '86/87 and '91/92 events.J Meteor Soc Japan, 1996, 74:49-62. doi:  10.2151/jmsj1965.74.1_49
    [22]
    Zhang R H, Sumi A, Kimoto M.A diagnostic study of the impact of El Nino on the precipitation in China.Adv Atmos Sci, 1999, 16(2):229-241. doi:  10.1007/BF02973084
    [23]
    刘屹岷, 刘伯奇, 任荣彩, 等.当前重大厄尔尼诺事件对我国春夏气候的影响.中国科学院院刊, 2016, 31(2):241-250. http://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201602013.htm
    [24]
    邵勰, 周兵.2015/2016年超强厄尔尼诺事件气候监测及诊断分析.气象, 2016, 42(5):540-547. doi:  10.7519/j.issn.1000-0526.2016.05.003
  • 加载中
  • -->

Catalog

    Figures(10)  / Tables(1)

    Article views (2678) PDF downloads(350) Cited by()
    • Received : 2017-08-22
    • Accepted : 2018-01-15
    • Published : 2018-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint