Jiang Ruijiao, Dong Wansheng, Liu Hengyi, et al. Locations and radiation strength of narrow bipolar pulses in a thunderstorm. J Appl Meteor Sci, 2018, 29(2): 177-187. DOI:  10.11898/1001-7313.20180205.
Citation: Jiang Ruijiao, Dong Wansheng, Liu Hengyi, et al. Locations and radiation strength of narrow bipolar pulses in a thunderstorm. J Appl Meteor Sci, 2018, 29(2): 177-187. DOI:  10.11898/1001-7313.20180205.

Locations and Radiation Strength of Narrow Bipolar Pulses in a Thunderstorm

DOI: 10.11898/1001-7313.20180205
  • Received Date: 2017-12-01
  • Rev Recd Date: 2018-01-19
  • Publish Date: 2018-03-31
  • Narrow bipolar pulses (NBE) are special flashes in thunderstorms which are different from regular in-cloud discharges and cloud-to-ground discharges. They can produce intense radiation in both VLF/LF and VHF bands. To explore the meteorological environment and discharge characteristics of NBE, locations and radiation strength of 608 positive NBE and 82 negative NBE detected in a thunderstorm day are analyzed using the dual band 3D lightning locating system in Chongqing. Results show that positive NBE occur at the altitude of 7-15 km, with the average altitude of 10.0 km. According to the radar reflectivity of positive NBE, they can be divided into three groups. 49 positive NBE, which occur in the thunderstorm cores (reflectivity), are categorized as Group Ⅰ. 350 NBE occurring in regions outside cores with the reflectivity higher than 5 dBZ are categorized as Group Ⅱ. The rest 209 positive NBE are Group Ⅲ. The radiation strength of these three groups are in descending order on both bands. The mean value of all positive NBE VLF/LF electric field change peaks normalized to 100 km is 13.4 V·m-1. The mean value of their VHF radiant powers is 73.5 kW. Negative NBE are generally produced in two regions in the thunderstorm. Among 82 negative NBE, 72 of them occur at the altitude of 16-20 km, and the average altitude is 18.0 km. They occur on or beside tops of thunderstorms with 30-35 dBZ echo heights higher than 18 km. The mean value of their VLF/LF electric field change peaks normalized to 100 km is 42.7 V·m-1. The mean value of the VHF radiant powers is 76.9 kW. 10 negative NBE occur at the altitude of 4-10 km, whose average altitude is 6.0 km. They all occur in thunderstorm cores. The mean value of VLF/LF electric field change peaks normalized to 100 km is 2.7 V·m-1. The mean value of VHF radiant powers is 18.2 kW. According to statistical results, the radiation strength of the upper negative NBE is mostly stronger than those of positive NBE and the lower negative NBE on VLF/LF band. In VHF band, values are similar, both of which are stronger than the lower negative NBE. The radiation strength of the lower negative NBE is weaker than that of positive NBE in both bands.
  • Fig. 1  Layout of the network and the vertical estimated errors given by Monte Varlo simulation (a)the vertical estimated errors given by Monte Varlo simulation at altitude of 12 km when the timing error is 200 ns with locations of NBE, (b)the vertical estimated errors given by Monte Varlo simulation at altitude of 12 km when the timing error is 500 ns

    (black lines represent the boundary of the administrative regions; black rhombuses represent the observation sites, blue dots represent positive NBE, red dots represent negative NBE, contoufs represent the distribution of errors)

    Fig. 2  VLF/LF electric waveforms and the received VHF radiant power waveforms of NBE (a)waveforms of a positive NBE detected by Beibei Site, (b)waveforms of a negative NBE detected by Tieshanping Site

    Fig. 3  The calibration of VHF receivers in the test frequency of 260 MHz

    Fig. 4  Altitudes of positive and negative NBE

    Fig. 5  Vertical sections of radar echoes with locations of NBE within 6 min (a)the first group of positive NBE, (b)the second group of positive NBE occurring outside the upper convection region on the inclined top of convective core, (c)the second group of positive NBE occurring outside the upper convection region on the top of convective core, (d)the first group of negative NBE occurring on the inclined top of convective core, (e)the first group of negative NBE occurring on the top of convective core, (f)the second group of negative NBE

    (blue stars represent positive NBE, red stars represent negative NBE, shaded areas present radar reflectivities)

    Fig. 6  Altitudes of positive and negative NBE versus their radiation strength (a)altitudes of positive and negative NBE versus their VLF/LF electric field change peaks, (b)altitudes of positive and negative NBE versus their VHF radiant powers

    Table  1  Isolation characteristics of NBE

    孤立性特征 正NBE 负NBE
    第1类 第2类 第3类 第1类 第2类
    起始云闪 6 40 44 0 3
    起始地闪 1 3 6 0 2
    孤立发生 42 307 169 72 5
    DownLoad: Download CSV

    Table  2  Calculation results of NBE radiation strength

    辐射强度 统计量 正NBE 负NBE
    第1类 第2类 第3类 第1类 第2类
    VLF/LF电场变化峰值/(V·m-1) 最大值 39.5 35.8 34.6 59.4 7.6
    最小值 3.5 1.5 1.5 1.9 1.5
    平均值 15.4 13.8 12.3 42.7 2.7
    VHF辐射功率/kW 最大值 261.4 250.7 232.0 219.9 60.3
    最小值 7.8 1.7 1.3 1.3 1.0
    平均值 83.7 81.8 57.6 76.9 18.2
    DownLoad: Download CSV
  • [1]
    Le Vine D M.Sources of the strongest RF radiation from lightning.Journal of Geophysical Research:Oceans, 1980, 85(C7):4091-4095. doi:  10.1029/JC085iC07p04091
    [2]
    Willett J C, Bailey J C, Krider E P.A class of unusual lightning electric field waveforms with very strong high-frequency radiation.Journal of Geophysical Research:Atmospheres, 1989, 94(D13):16255-16267. doi:  10.1029/JD094iD13p16255
    [3]
    Nag A, Rakov V A, Tsalikis D, et al.On phenomenology of compact intracloud lightning discharges.Journal of Geophysical Research:Atmospheres, 2010, 115:D14115. doi:  10.1029/2009JD012957
    [4]
    祝宝友, 陶善昌, 谭涌波.伴随超强VHF辐射的闪电双极性窄脉冲初步观测.气象学报, 2007, 65(1):124-130. http://www.oalib.com/paper/5064763
    [5]
    Holden D N, Munson C P, Devenport J C.Satellite observations of transionospheric pulse pairs.Geophys Res Lett, 1995, 22(8):889-892. doi:  10.1029/95GL00432
    [6]
    Thomas R J, Krehbiel P R, Rison W, et al.Observations of VHF source powers radiated by lightning.Geophys Res Lett, 2001, 28(1):143-146. doi:  10.1029/2000GL011464
    [7]
    Jacobson A R, Heavner M J.Comparison of narrow bipolar events with ordinary lightning as proxies for severe convection.Mon Wea Rev, 2005, 133:1144-1154. doi:  10.1175/MWR2915.1
    [8]
    Smith D A, Shao X M, Holden D N, et al.A distinct class of isolated intracloud lightning discharges and their associated radio emissions.Journal of Geophysical Research:Atmospheres, 1999, 104(D4):4189-4212. doi:  10.1029/1998JD200045
    [9]
    Rison W, Thomas R J, Krehbiel P R, et al.A GPS-based three-dimensional lightning mapping system:Initial observations in central New Mexico.Geophys Res Lett, 1999, 26(23):3573-3576. doi:  10.1029/1999GL010856
    [10]
    Smith D A, Eack K B, Harlin J, et al.The Los Alamos Sferic Array:A research tool for lightning investigations.Journal of Geophysical Research:Atmospheres, 2002, 107(D13):5-14. http://adsabs.harvard.edu/abs/2002JGRD..107.4183S
    [11]
    Wu T, Yoshida S, Ushio T, et al.Lightning-initiator type of narrow bipolar events and their subsequent pulse trains.J Geophys Res, 2014, 119(12):7425-7438. doi:  10.1002/2014JD021842/abstract
    [12]
    Cooray V, Lundquist S.Characteristics of the radiation fields from lightning in Sri Lanka in the tropics.Journal of Geophysical Research:Atmospheres, 1985, 90(D4):6099-6109. doi:  10.1029/JD090iD04p06099
    [13]
    Zhu B, Zhou H, Ma M, et al.Observations of narrow bipolar events in East China.Journal of Atmospheric and Solar-Terrestrial Physics, 2010, 72:271-278. doi:  10.1016/j.jastp.2009.12.002
    [14]
    Wu T, Dong W, Zhang Y, et al.Comparison of positive and negative compact intracloud discharges.Journal of Geophysical Research:Atmospheres, 2011, 116:D3111. doi:  10.1029/2010JD015233
    [15]
    Rison W, Krehbiel P R, Stock M G, et al.Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms.Nat Commun, 2016, 7:10721. doi:  10.1038/ncomms10721
    [16]
    张广庶, 王彦辉, 郄秀书, 等.基于时差法三维定位系统对闪电放电过程的观测研究.中国科学(地球科学), 2010, 40(4):523-534. http://earth.scichina.com:8080/sciD/CN/abstract/abstract417082.shtml
    [17]
    Wang Y, Zhang G, Qie X, et al.Characteristics of compact intracloud discharges observed in a severe thunderstorm in northern part of China.Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 84-85:7-14. doi:  10.1016/j.jastp.2012.05.003
    [18]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [19]
    Wu T, Dong W, Zhang Y, et al.Discharge height of lightning narrow bipolar events.Journal of Geophysical Research:Atmospheres, 2012, 117:D5119. doi:  10.1029/2011JD017054/full
    [20]
    Lü F, Zhu B, Zhou H, et al.Observations of compact intracloud lightning discharges in the northernmost region (51°N) of China.Journal of Geophysical Research:Atmospheres, 2013, 118(10):4458-4465. doi:  10.1002/jgrd.50295
    [21]
    Wiens K C, Hamlin T, Harlin J, et al.Relationships among Narrow Bipolar Events, "total" lightning, and radar-inferred convective strength in Great Plains thunderstorms.Journal of Geophysical Research:Atmospheres, 2008, 113:D5201. doi:  10.1029/2007JB005081
    [22]
    Wu T, Takayanagi Y, Yoshida S, et al.Spatial relationship between lightning narrow bipolar events and parent thunderstorms as revealed by phased array radar.Geophys Res Lett, 2013, 40(3):618-623. doi:  10.1002/grl.50112
    [23]
    张义军, 徐良韬, 郑栋, 等.强风暴中反极性电荷结构研究进展.应用气象学报, 2014, 25(5):513-526. doi:  10.11898/1001-7313.20140501
    [24]
    张义军, 周秀骥.雷电研究的回顾和进展.应用气象学报, 2006, 17(6):829-834. doi:  10.11898/1001-7313.20060619
    [25]
    Liu H, Dong W, Wu T, et al.Observation of compact intracloud discharges using VHF broadband interferometers.Journal of Geophysical Research:Atmospheres, 2012, 117:D1203. http://ieeexplore.ieee.org/abstract/document/6344211
    [26]
    刘恒毅, 董万胜, 张义军.云闪K过程的三维时空特征.应用气象学报, 2017, 28(6):700-713. doi:  10.11898/1001-7313.20170606
    [27]
    张志孝, 郑栋, 张义军, 等.闪电初始阶段和尺度判别方法及其特征.应用气象学报, 2017, 28(4):414-426. doi:  10.11898/1001-7313.20170403
    [28]
    刘恒毅, 董万胜, 徐良韬, 等.闪电起始过程时空特征的宽带干涉仪三维观测.应用气象学报, 2016, 27(1):16-24. doi:  10.11898/1001-7313.20160102
    [29]
    董万胜, 刘欣生, 张义军, 等.25~100 MHz频段闪电脉冲辐射能量频谱特征.中国电机工程学报, 2003, 23(3):104-107. https://www.wenkuxiazai.com/doc/f06226c7f90f76c661371aee-4.html
    [30]
    Betz H D, Marshall T C, Stolzenburg M, et al.Detection of in-cloud lightning with VLF/LF and VHF networks for studies of the initial discharge phase.Geophys Res Lett, 2008, 35:L23802. doi:  10.1029/2008GL035820
    [31]
    Shao X, Stanley M, Regan A, et al.Total lightning observations with the new and improved Los Alamos Sferic Array (LASA).J Atmos Ocean Technol, 2006, 23(10):1273-1288. doi:  10.1175/JTECH1908.1
    [32]
    Thomas R J, Krehbiel P R, Rison W, et al.Accuracy of the lightning mapping array.Journal of Geophysical Research:Atmospheres, 2004, 109:D14207. doi:  10.1029/2004JD004549
    [33]
    张文娟, 孟青, 吕伟涛, 等.时间差闪电监测网的误差分析和布局优化.应用气象学报, 2009, 20(4):402-410. doi:  10.11898/1001-7313.20090403
    [34]
    肖艳姣, 刘黎平.新一代天气雷达网资料的三维格点化及拼图方法研究.气象学报, 2006, 64(5):647-657. doi:  10.11676/qxxb2006.063
    [35]
    王飞, 张义军, 赵均壮, 等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报, 2008, 19(2):153-160. doi:  10.11898/1001-7313.20080228
    [36]
    Uman M A, Mclain D K, Krider E P.The electromagnetic radiation from a finite antenna.American Journal of Physics, 1975, 43(1):33-38. doi:  10.1119/1.10027
    [37]
    武斌, 张广庶, 文军, 等.闪电初始预击穿过程辐射脉冲特征及电流模型.应用气象学报, 2017, 28(5):555-567. doi:  10.11898/1001-7313.20170504
    [38]
    刘妍秀, 张广庶, 王彦辉, 等.闪电VHF辐射源功率观测及雷暴电荷结构的初步分析.高原气象, 2016, 35(6):1662-1670. doi:  10.7522/j.issn.1000-0534.2016.00051
    [39]
    Smith D A, Heavner M J, Jacobson A R, et al.A method for determining intracloud lightning and ionospheric heights from VLF/LF electric field records.Radio Science, 2004, 39:S1010. doi:  10.1029/2002RS002790/references
    [40]
    吴亭, 董万胜, 李良福, 等.基于电离层反射的袖珍云闪(CID)三维定位研究.地球物理学报, 2012, 55(4):1095-1103. http://www.oalib.com/paper/4868794
    [41]
    Robinson G D.The distribution of electricity in thunderclouds.Quarterly Journal of the Royal Meteorological Society, 1941, 67:332-340. doi:  10.1007%2FBF02247519.pdf
    [42]
    Stolzenburg M, Rust W D, Smull B F, et al.Electrical structure in thunderstorm convective regions1. Mesoscale convective systems.J Geophys Res, 1998, 103(D12):14059-14078. doi:  10.1029/97JD03546
    [43]
    Karunarathna N, Marshall T C, Stolzenburg M, et al.Narrow bipolar pulse locations compared to thunderstorm radar echo structure.Journal of Geophysical Research:Atmospheres, 2015, 120(22):11690-11706. doi:  10.1002/2015JD023829
    [44]
    Riousset J A, Pasko V P, Krehbiel P R, et al.Modeling of thundercloud screening charges:Implications for blue and gigantic jets.Journal of Geophysical Research:Space Physics, 2010, 115:A10E. doi:  10.1029/97JD03545
    [45]
    王飞, 董万胜, 张义军, 等.云内大粒子对闪电活动影响的个例模拟.应用气象学报, 2009, 20(5):564-570. doi:  10.11898/1001-7313.20090507
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (3312) PDF downloads(248) Cited by()
    • Received : 2017-12-01
    • Accepted : 2018-01-19
    • Published : 2018-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint