Chang Yu, Ma Suyan, Zhong Xia. Meso-scale characteristics of typical summer short-time strong rainfall events in Inner Mongolia. J Appl Meteor Sci, 2018, 29(2): 232-244. DOI:  10.11898/1001-7313.20180209.
Citation: Chang Yu, Ma Suyan, Zhong Xia. Meso-scale characteristics of typical summer short-time strong rainfall events in Inner Mongolia. J Appl Meteor Sci, 2018, 29(2): 232-244. DOI:  10.11898/1001-7313.20180209.

Meso-scale Characteristics of Typical Summer Short-time Strong Rainfall Events in Inner Mongolia

DOI: 10.11898/1001-7313.20180209
  • Received Date: 2017-07-12
  • Rev Recd Date: 2018-01-26
  • Publish Date: 2018-03-31
  • Inner Mongolia Autonomous Region is in the northern frontier of China, where characteristics of short-time strong rainfall events(STSRE) are spatially small-scale and abrupt, and it is easy to cause urban waterlogging and local floods.Especially, the STSRE below 20 mm per hour could cause disaster in the west of Inner Mongolia.In the forecast operation, it's found that the combination of wind field data, sea-level pressure of automatic weather stations, and lighting data could capture meso-micro scale information that triggers the development of the mesoscale convective system(MCS).Meso-scale characteristics near ground layer over MCS is related to STSRE, such as meso-cyclone or medium low pressure.Using conventional observations, global analysis data by National Centers for Environment Prediction(NCEP), black body temperature(TBB) data of FY-2D, automatic weather station data and lighting data of Inner Mongolia, 37 STSRE are analyzed from 2012 to 2015 in summer over Inner Mongolia.In west region of Inner Mongolia, synoptic scale patterns that cause STSRE are low vortex or low trough at 500 hPa, which interact with Indian vortex(Plateau vortex, Sichuan vortex or northwest vortex) at 700 hPa, and the Western Pacific subtropical high or typhoon.But in the east region, synoptic scale patterns that cause STSRE are either low vortex or low trough, or the interaction of low vortex or low trough with the Western Pacific subtropical high or typhoon.These synoptic patterns could both affect central region of Inner Mongolia.MCS occurs in the rear of cold front cloud system, vortex cloud system and warm-wet shear cloud system, is the direct inducement systems of STSRE.STSRE occur when MCS is developing and matured, and they appear in high TBB gradient areas where MCS moves out and cold air intrudes in.Meso-cyclone, meso-scale depression, meso-small scale cyclonic convergence wind field and mesoscale shear line are observed by automatic weather station trigger the evolution of MCS.The developing MCSs above the meso-cyclone are elliptical, while MCSs induced by shear line are mostly band shaped, and most MCSs that develop in the synoptic scale vortex cloud system are banded or irregular.Cloud-to-ground(CG) lightning flashes density value reaches the maximum when MCS is developing and matured.The high value of CG lightning intensity is in accordance with the region of development and strengthening of MCS, too.In the western and central northern regions of Inner Mongolia, 3 hours before STSRE, the relative humidity is normally 60%-80% but in other regions it is 80%-90%.The cold air in the low troposphere is critical for the development of MCS.
  • Fig. 1  Geopotential height(the contour, unit:dagpm) and wind(the barb, unit:m·s-1) at 700 hPa with TBB(the shaded) of cloud top

    (a)Guaizihu, at 1400 BT 24 Jul 2012, (b)Mandula, at 1400 BT 5 Jul 2015,
    (c)Xinghe, at 2000 BT 1 Aug 2015, (d)Ulanhot, at 0200 BT 6 Aug 2015
    (triangle represents the station of short-time strong rainfall events, rectangular represents the target region)

    Fig. 2  Sea-level pressure(the black contour, unit:hPa), wind field by automatic stations(the barb, unit:m·s-1), TBB(the shaded) and 1 h precipitation(the pink contour, the interval is 10 mm, unit:mm) at 2000 BT 5 Aug(a), 2300 BT 5 Aug(b) and 0100 BT 6 Aug(c) in 2015

    Fig. 3  Cloud-to-ground lightning density(the shaded) and 1 h precipitation(the pink contour, the interval is 10 mm, unit:mm) at 2000 BT 5 Aug(a), 2300 BT 5 Aug(b) and 0100 BT 6 Aug(c) in 2015

    (the dotted rectangle represents the target region of positive and negative cloud-to-ground lighting)

    Fig. 4  The same as in Fig. 2, but for 1700 BT(a), 1800 BT(b), 1900 BT(c) on 1 Aug 2015

    Fig. 5  The same as in Fig. 3, but for 1700 BT(a), 1800 BT(b), 1900 BT(c) on 1 Aug 2015

    Fig. 6  The frequency of positive and negative cloud-to-ground lightning and 1 h precipitation

    (a)at Ulanhot from 1800 BT 5 Aug to 0600 BT 6 Aug in 2015,
    (b)at Xinghe from 1100 BT to 2300 BT on 1 Aug 2015

    Fig. 7  Sea-level pressure(the black contour, unit:hPa), wind field by automatic stations(the barb, unit:m·s-1), TBB(the shaded) and 1 h precipitation(the pink contour, the interval is 10 mm, unit:mm) at 1500 BT(a), 1600 BT(b), 1700 BT(c) on 15 Jul 2014

    Fig. 8  Sea-level pressure(the black contour, unit:hPa), wind field at automatic stations(the barb, unit:m·s-1), TBB(the shaded) and 1 h precipitation(the pink contour, the interval is 10 mm, unit:mm)

    (a)Luanjingtan, at 2000 BT 30 Aug 2012, (b)Huhhot, at 1700 BT 7 Jul 2013,
    (c)Xilinhot, at 1800 BT 22 Jul 2015

    Fig. 9  Relative humidity(the shaded) and temperature(the grey contour, unit:℃) at surface of strong rainfall cases and 1 h precipitation(the pink contour, the interval in 10 mm, unit:mm)

    Table  1  Short-time strong rainfall cases

    事件编号 时间 站点 降水强度/(mm·h-1) 天气系统 云系特征
    1 2012-06-25T16:00 察哈尔右翼后旗 68.4 北槽南涡 锋面气旋云系尾部发展的MCS
    2 2012-06-27T01:00 乌拉特后旗 42.4 北槽南涡和台风 锋面气旋云系尾部发展的MCS
    3 2012-07-18T18:00 阿尔山 33.4 低槽和台风 锋面气旋云系尾部发展的MCS
    4 2012-07-20T14:00 阿右旗 30.1 北槽南涡与副高和台风 涡旋云系中MCS
    5 2012-07-24T18:00 拐子湖 21.6 北槽南涡与副高和台风 涡旋云系中MCS
    6 2012-07-27T16:00和20:00 磴口乌审旗 46.342.8 北槽南涡与副高和台风 涡旋云系中MCS
    7 2012-08-27T20:00 准格尔旗 37.2 北槽南涡与副高和台风 锋面气旋云系尾部发展的MCS
    8 2012-08-30T20:00 孪井滩 25.3 北槽南涡 锋面气旋云系尾部发展的MCS
    9 2013-06-27T04:00 扎鲁特旗 34.2 低槽 锋面气旋云系尾部发展的MCS
    10 2013-06-29T18:00 扎赉特旗 46.3 低槽与副高和台风 涡旋云系中发展的MCS
    11 2013-07-07T17:00 呼和浩特 41.6 北槽南涡和副高 锋面气旋云系尾部发展的MCS
    12 2013-07-22T16:00 达茂旗 47.0 北槽南涡和副高 锋面气旋云系尾部发展的MCS
    13 2013-07-27T15:00 海拉尔 33.8 低槽与副高和台风 涡旋云系中冷云区
    14 2013-07-29T22:00 清水河 36.3 低槽和副高 锋面气旋云系尾部发展的MCS
    15 2013-08-07T14:00 博克图 34.9 低涡与副高和台风 涡旋云系中MCS
    16 2013-08-12T13:00 莫力达瓦旗 51.4 低涡与副高和台风 锋面气旋云系尾部发展的MCS
    17 2013-08-22T04:00 阿左旗 21.0 北槽南涡与副高和台风 暖湿切变线云系中MCS
    18 2014-06-08T18:00 阿荣旗 41.6 华北低涡 涡旋云系中MCS
    19 2014-06-21T13:00 阿巴嘎旗 47.7 低涡 涡旋云系中MCS
    20 2014-07-15T15:00—17:00 奈曼旗 39.9, 53.0, 32.9 低槽和副高 涡旋云系中MCS
    21 2014-07-19T20:00 莫力达瓦旗 45.4 低涡与副高和台风 锋面气旋云系尾部发展的MCS
    22 2014-08-02T16:00 科左后旗 41.8 低槽和台风 锋面气旋云系尾部发展的MCS
    23 2014-08-09T16:00 多伦 56.6 北槽南涡和台风 锋面气旋云系尾部发展的MCS
    24 2014-08-27T14:00 乌审召 32.7 低槽和副高 涡旋云系的MCS
    25 2015-06-06T17:00 科右中旗 31.1 北槽南涡和副高 锋面气旋云系尾部发展的MCS
    26 2015-06-22T18:00 锡林浩特 48.4 北槽南涡与副高和台风 暖湿切变云系中MCS
    27 2015-07-05T16:00 满都拉 28.6 低槽与副高和台风 暖湿切变云系中MCS
    28 2015-07-07T18:00 乌拉特中旗 27.1 低槽与副高和台风 锋面气旋云系尾部发展的MCS
    29 2015-07-20T15:00 临河 15.7 北槽南涡与副高 涡旋云系中MCS
    30 2015-07-20T20:00 白云鄂博 25.1 北槽南涡与副高 暖湿切变云系中MCS
    31 2015-07-21T17:00 拐子湖 12.5 北槽南涡与副高和台风 暖湿切变云系中MCS
    32 2015-07-22T13:00 莫力达瓦旗 49.3 低槽和副高 暖湿切变云系中MCS
    33 2015-07-23T22:00 高力板 45.1 低槽和副高 锋面气旋云系尾部发展的MCS
    34 2015-08-01T19:00 兴和 33.3 北槽南涡 锋面气旋云系尾部发展的MCS
    35 2015-08-06T01:00 乌兰浩特 35.8 低涡与副高和台风 涡旋云系中MCS
    36 2015-08-06T21:00 图里河 44.7 低涡与副高和台风 涡旋云系中MCS
    37 2015-08-30T16:00 太仆寺 34.9 北槽南涡 涡旋云系中MCS
    DownLoad: Download CSV

    Table  2  Observation information of extreme precipitation cases

    事件编号 MCS特征 TBB/℃ 最大地闪密度/h-1 风场
    1 东西向带状 -52 10 切变线
    2 东西向带状 -42 10 切变线
    3 东西向带状 -52 50 切变线
    4 不规则 -42 地闪不活跃 中气旋
    5 圆形 -42 地闪不活跃 中气旋
    6 椭圆形 -52 10 中气旋
    7 东西向带状 -42 150 切变线
    8 东西向带状 -42 地闪不活跃 切变线演变为中高压
    9 圆形 -42 10 气旋性辐合风场
    10 圆形 -42 10 气旋性辐合风场
    11 东西向带状 -42 500 切变线演变为中高压
    12 东西向带状 -32 50 切变线演变为中高压
    13 不规则 -42 地闪不活跃 气旋性辐合风场
    14 东西向带状 -42 50 切变线
    15 东西向带状 -42 50 气旋性辐合风场
    16 椭圆形 -52 10 切变线
    17 椭圆形 -42 地闪不活跃 切变线
    18 东西向带状 -52 地闪不活跃 气旋性辐合风场
    19 不规则 -42 地闪不活跃 气旋性辐合风场演变为中高压
    20 不规则 -52 10 气旋性辐合风场
    21 椭圆形 -52 地闪不活跃 切变线
    22 椭圆形 -42 10 切变线
    23 不规则 -42 10 切变线
    24 东西向带状 -42 500 切变线
    25 东西向带状 -42 19 切变线
    26 椭圆形 -52 地闪不活跃 中低压演变为中高压
    27 南北向带状 -52 53 切变线
    28 不规则 -42 地闪不活跃 切变线
    29 不规则 -42 37 切变线
    30 不规则 -42 315 切变线
    31 东西向带状 -42 地闪不活跃 切变线
    32 南北向带状 -52 地闪不活跃 切变线
    33 椭圆形 -52 24 切变线
    34 椭圆形 -62 916 中低压
    35 椭圆形 -52 34 中气旋
    36 东西向带状 -42 188 中气旋
    37 椭圆形 -42 43 中气旋
    DownLoad: Download CSV
  • [1]
    顾润源, 孙永刚, 韩经纬, 等.内蒙古自治区天气预报手册.北京:气象出版社, 2012:159-247.
    [2]
    Easterling D R, Evans J L, Groisman P Y, et al.Observed variability and trends in extreme climate events:A brief review.American Meteorological Society, 2000, 81(3):417-425. doi:  10.1175/1520-0477(2000)081<0417:OVATIE>2.3.CO;2
    [3]
    Shaw S B, Royem A A, Riha S J.The relationship between extreme hourly precipitation and surface temperature in different hydroclimatic regions of the United States.American Meteorological Society, 2011, 12(2):319-325.
    [4]
    Vimal M, John M W, Dennis P L.Relationship between hourly extreme precipitation and local air temperature in the United States.Geophys Res Lett, 2012, 39, DOI: 10.1029/2012GL052790.
    [5]
    Shouraseni S R, Mathieu R.Spatial patterns of seasonal scale trends in extreme hourly precipitation in South Africa.Applied Geography, 2013, 39:151-157. doi:  10.1016/j.apgeog.2012.11.022
    [6]
    Shouraseni S R.A spatial analysis of extreme hourly precipitation patterns in India.Royal Meteorological Society, 2009, 29:345-355.
    [7]
    翟盘茂, 李蕾, 周佰铨, 等.江淮流域持续性极端降水及预报方法研究进展.应用气象学报, 2016, 27(5):631-640. doi:  10.11898/1001-7313.20160511
    [8]
    何立富, 陈涛, 孔期.华南暖区暴雨研究进展.应用气象学报, 2016, 27(5):559-569. doi:  10.11898/1001-7313.20160505
    [9]
    陈斌, 徐祥德, 施晓晖.拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区.气象学报, 2011, 69(5):810-818. doi:  10.11676/qxxb2011.071
    [10]
    杨金虎, 江志红, 王鹏祥, 等.西北地区东部夏季极端降水量非均匀性特征.应用气象学报, 2008, 19(1):111-115. doi:  10.11898/1001-7313.20080118
    [11]
    李建, 宇如聪, 孙溦.从小时尺度考察中国中东部极端强降水的持续性和季节特征.气象学报, 2013, 71(4):652-659. doi:  10.11676/qxxb2013.052
    [12]
    Yu Rucong, Li Jian.Hourly rainfall changes in response to surface air temperature over eastern contiguous China.American Meteorological Society, 2012, 25(19):6851-6861. https://www.researchgate.net/publication/258660715_Hourly_Rainfall_Changes_in_Response_to_Surface_Air_Temperature_over_Eastern_Contiguous_China
    [13]
    Kane R J, Chelius C R, Fritsch J M.Precipitation characteristics of mesoscale convective weather systems.American Meteorological Society, 1987, 26:1345-1357. https://www.researchgate.net/publication/234476963_Precipitation_Characteristics_of_Mesoscale_Convective_Weather_Systems
    [14]
    Rigo T, Llasat M-C.Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996-2000.Atmos Res, 2007, 83:458-472. doi:  10.1016/j.atmosres.2005.10.016
    [15]
    常煜.内蒙古典型暴雨过程的中尺度雨团观测分析.应用气象学报, 2016, 27(1):56-66. doi:  10.11898/1001-7313.20160106
    [16]
    Mattos E V, Machado L A.Cloud-to-ground lightning and mesoscale convective systems.Atmos Res, 2011, 99:377-390. doi:  10.1016/j.atmosres.2010.11.007
    [17]
    Holle R L, Watson A I, López R E, et al.The life cycle of lightning and severe weather in a 3-4 June 1985 PRE-STORM mesoscale convective system.Mon Wea Rev, 1994, 122:1798-1808. doi:  10.1175/1520-0493(1994)122<1798:TLCOLA>2.0.CO;2
    [18]
    郑栋, 张义军, 孟青, 等.北京地区雷暴过程闪电与地面降水的相关关系.应用气象学报, 2010, 21(3):287-297. doi:  10.11898/1001-7313.20100304
    [19]
    王婷波, 郑栋, 张义军, 等.基于大气层结和雷暴演变的闪电和降水关系.应用气象学报, 2014, 25(1):33-41. doi:  10.11898/1001-7313.20140104
    [20]
    张义军, 孟青, 马明, 等.闪电探测技术发展和资料应用.应用气象学报, 2006, 17(5):611-620. doi:  10.11898/1001-7313.20060504
    [21]
    张腾飞, 尹丽云, 张杰, 等.云南两次中尺度对流雷暴系统演变和地闪特征.应用气象学报, 2013, 24(2):207-218. doi:  10.11898/1001-7313.20130209
    [22]
    马素艳, 韩经纬, 斯琴, 等.长生命史冷涡背景下内蒙古地区强对流天气分析.高原气象, 2015, 34(5):1435-1444. doi:  10.7522/j.issn.1000-0534.2014.00098
    [23]
    常煜, 韩经纬.一次阻塞形势下的内蒙古暴雨过程特征分析.高原气象, 2015, 34(3):741-752. doi:  10.7522/j.issn.1000-0534.2014.00033
    [24]
    常煜, 李秀娟, 陈超, 等.内蒙古一次暴雨过程中尺度特征及成因分析.高原气象, 2016, 35(2):432-443. doi:  10.7522/j.issn.1000-0534.2014.00155
    [25]
    Maddox R A.Mesoscale convective complexes.American Meteorological Society, 1980, 61(11):1374-1387. doi:  10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2
    [26]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 2007:401-416.
    [27]
    丁一汇.高等天气学.北京:气象出版社, 2005:309-443.
    [28]
    张家国, 周金莲, 谌伟, 等.大别山西侧极端强降水中尺度对流系统结构与传播特征.气象学报, 2015, 73(2):291-304. doi:  10.11676/qxxb2015.019
    [29]
    Williams E R, Weber M E, Orille R E.The relationship between lightning type and convective state of thunderclouds.J Geophys Res, 1989, 94(11):13213-13220. doi:  10.1029/JD094iD11p13213/full?scrollTo=footer-citing
    [30]
    Gungle B, Krider E P.Cloud-to-ground lightning and surface rainfall in warm-season Florida thunderstorms.J Geophys Res, 2006, 111:D19203. doi:  10.1029/2005JD006802
  • 加载中
  • -->

Catalog

    Figures(9)  / Tables(2)

    Article views (2868) PDF downloads(447) Cited by()
    • Received : 2017-07-12
    • Accepted : 2018-01-26
    • Published : 2018-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint