Gao Xiaomei, Yu Xiaoding, Wang Lingjun, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. DOI:  10.11898/1001-7313.20180210.
Citation: Gao Xiaomei, Yu Xiaoding, Wang Lingjun, et al. Comparative analysis of two strong convections triggered by sea-breeze front in Shandong Peninsula. J Appl Meteor Sci, 2018, 29(2): 245-256. DOI:  10.11898/1001-7313.20180210.

Comparative Analysis of Two Strong Convections Triggered by Sea-breeze Front in Shandong Peninsula

DOI: 10.11898/1001-7313.20180210
  • Received Date: 2017-09-06
  • Rev Recd Date: 2018-01-24
  • Publish Date: 2018-03-31
  • Using surface and high conventional observations, radar echo data and automatic weather station data of Yantai and Qingdao, two strong convections triggered by sea-breeze front in Shandong Peninsula on 14 July 2014 and 29 June 2009 are analyzed.The convection on 14 July 2014 occurs under circulation patterns of forward-tilting trough in the back of cold vortex, where dry and cold air at middle and upper layer is strong, warm and humid air at low layer is weak, leading to obvious static instability stratification and moderate convective available potential energy.The vertical wind shear is from weak to moderate, therefore the duration of supercell is short, and the range of hail is small.The convection on 29 June 2009 appears under circulation patterns of a typical northeast cold vortex, and strong vertical wind shear is a principal factor in the maintenance of supercell.Sea-breeze front, gust front and convergence line of surface are triggering systems.The high convective available potential energy, temperature and pseudo equivalent potential temperature difference between 850 hPa and 500 hPa, average wind speed of storm bearing layer, wind indices, and potential downside indices are indicative to the intensity of convection.Both processes have supercell storms, showing similar echo characteristics, such as hanging strong echoes, weak echoes regions, echo pendency, hook echoes and mesocyclones.The difference is that there is a strong mesocyclone on 29 June 2009, while the mesocyclone on 14 July 2014 is much weaker, so the former has a larger convection range and stronger intensity.The collision process between sea-breeze front and gust front enhances the mesocyclone, and when one factor weakens the mesocyclone weakens too.Two hail processes appear in the decline phase of cell top and echo top, maximum period of a storm with maximum reflectivity.The strong radar echoes over 50 dBZ in both processes extend to much higher than the height of -20℃.Lower melting level, suitable height of 0℃, thick depth of negative temperature layer are important to large hails.In addition, the formation period of large hails are in the period of low base height, deep thickness, severe rotation intensity of mesocyclone and is simultaneous with the strong period of mesocyclone.Therefore, the size of hail is related to base height, thickness, and rotation intensity of mesocyclone.Supercell storms of two processes occur to storms of the sea-breeze front which is close to the mountains.The stronger uplift triggering caused by combination of terrain and sea-breeze front is critical to strengthen original convective storms and evolve into supercell storms.
  • Fig. 1  500 hPa analysis at 0800 BT 14 Jul 2014(a) and 0800 BT 29 Jun 2009(b)

    (superimposed 850 hPa trough, the red circle denotes hail area)

    Fig. 2  The surface wind observation at 1400 BT 14 Jul 2014(a) and 1400 BT 29 Jun 2009(b)

    (the black dotted line denotes convergence line of surface, the orange dotted line denotes sea-breeze front)

    Fig. 3  Refelectivity and radial velocity of Yantai radar on 14 Jul 2014

    (a)reflectivity of 0.5° elevation at 1104 BT, (b)reflectivity of 0.5° elevation at 1322 BT,
    (c)reflectivity of 0.5° elevation at 1346 BT, (d)reflectivity of 6.2° elevation at 1526 BT,
    (e)radial velocity of 4.3° elevation at 1520 BT, (f)radial velocity of 10.0° elevation at 1536 BT

    Fig. 4  Refelectivity and radial velocity of Qingdao radar on 29 Jun 2009

    (a)reflectivity of 0.5° elevation at 1356 BT, (b)reflectivity of 0.5° elevation at 1433 BT,
    (c)reflectivity of 0.5° elevation at 1546 BT, (d)reflectivity of 9.9° elevation at 1552 BT,
    (e)radial velocity of 9.9° elevation at 1534 BT, (f)radial velocity of 0.5° elevation at 1546 BT

    Fig. 5  Temporal evolution of echo top, storm with cell top and maximum reflectivity on 14 Jul 2014(a) and 29 Jun 2009(b)

    Fig. 6  Temporal evolution of base height, top height, maximum shear and the height of maximum shear with mesocyclone on 14 Jul 2014(a) and 29 Jun 2009(b)

    Table  1  Sounding elements at Qingdao Station

    探空要素 2014-07-14T08:00 2014-07-14T14:00 2009-06-29T08:00 2009-06-29T14:00
    850 hPa与500 hPa 温度差/℃ 29 26
    850 hPa与500 hPa假相当位温之差/K 9 15 11 20
    对流有效位能/(J·kg-1) 230 1800 170 1300
    抬升凝结高度/km 829 950 959 945
    0~6 km风矢量差/(m·s-1) 11.4 12.5 21.7 21.1
    风暴承载层平均风速/(m·s-1) 12.4 18.3
    大风指数/(m·s-1) 28 32
    潜在下冲指数 4.2 3.2
    抬升指数/℃ -0.5 -5.7 -1.4 -1.4
    沙氏指数/℃ -1.4 -1.2 -2.0 -1.8
    DownLoad: Download CSV

    Table  2  Height and humidity conditions at Qingdao Station

    探空要素 2014-07-14T08:00 2014-07-14T14:00 2009-06-29T08:00 2009-06-29T14:00
    地面和850 hPa温度露点差平均值/℃ 6 6 2 2
    对流层中上层干空气强度/℃ 19 32
    0℃层高度/km 4.1 4.6
    -20℃层高度/km 7.1 7.8
    融化层高度/km 3.4 2.95
    地面露点温度/℃ 19 22 23 23
    DownLoad: Download CSV
  • [1]
    Dailey P S, Fovell R G.Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls.Part Ⅰ:Offshore ambient flow.Mon Wea Rev, 1999, 127:858-878. doi:  10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2
    [2]
    王彦, 于莉莉, 李艳伟, 等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报, 2011, 22(6):724-731. doi:  10.11898/1001-7313.20110610
    [3]
    刘运策, 庄旭东.珠江三角洲地区由海风锋触发形成的强对流天气过程分析.应用气象学报, 2001, 12(4):433-441. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20010458&flag=1
    [4]
    陈淑琴, 章丽娜, 俞小鼎, 等.浙北沿海连续3次飑线演变过程的环境条件.应用气象学报, 2017, 28(3):357-368. doi:  10.11898/1001-7313.20170309
    [5]
    郑永光, 周康辉, 盛杰, 等.强对流天气监测预报预警技术进展.应用气象学报, 2015, 26(6):641-657. doi:  10.11898/1001-7313.20150601
    [6]
    王秀明, 俞小鼎, 朱禾.NCEP再分析资料在强对流环境分析中的应用.应用气象学报, 2012, 23(2):139-146. doi:  10.11898/1001-7313.20120202
    [7]
    段亚鹏, 王东海, 刘英."东方之星"翻沉事件强对流天气分析及数值模拟.应用气象学报, 2017, 28(6):666-677. doi:  10.11898/1001-7313.20170603
    [8]
    王宁, 王婷婷, 张硕, 等.东北冷涡背景下一次龙卷过程的观测分析.应用气象学报, 2014, 25(4):463-469. doi:  10.11898/1001-7313.20140409
    [9]
    陈元昭, 俞小鼎, 陈训来, 等.2015年5月华南一次龙卷过程观测分析.应用气象学报, 2016, 27(3):334-341. doi:  10.11898/1001-7313.20160308
    [10]
    Wilson J W, Mueller C K.Nowcast of thunderstorminitiation and evolution.Wea Forecasting, 1993, 8:113-131. doi:  10.1175/1520-0434(1993)008<0113:NOTIAE>2.0.CO;2
    [11]
    Wilson J W, Megenhardt D L.Thunderstorm initiation, organization and lifetime associated with Florida boundary layer convergence lines.Mon Wea Rev, 1997, 125:1507-1525. doi:  10.1175/1520-0493(1997)125<1507:TIOALA>2.0.CO;2
    [12]
    王彦, 李胜山, 郭立, 等.渤海湾海风锋雷达回波特征分析.气象, 2006, 32(12):23-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qx200612004
    [13]
    刘彬贤, 王彦, 刘一玮.渤海湾海风锋与阵风锋碰撞形成雷暴天气的诊断特征.大气科学学报, 2015, 38(1):132-136. http://www.cnki.com.cn/Article/CJFDTotal-NJQX201501016.htm
    [14]
    梁钊明, 高守亭, 王彦.渤海湾地区碰撞型海风锋天气过程的资料诊断分析.气候与环境研究, 2013, 18(5):607-616. doi:  10.3878/j.issn.1006-9585.2012.12002
    [15]
    薛德强, 郑全岭, 钱喜镇, 等.山东半岛的海陆风环流及其影响.南京气象学院学报, 1995, 18(2):293-299. http://www.cqvip.com/QK/91555X/199502/1839032.html
    [16]
    李庆宝, 苗世光, 刘学刚, 等.边界层流场和地形特征对青岛奥帆赛场午后海风影响的研究.气象学报, 2010, 68(6):985-997. doi:  10.11676/qxxb2010.093
    [17]
    伍志方, 庞古乾, 贺汉青, 等.2012年4月广东左移和飑线内超级单体的环境条件和结构对比分析.气象, 2014, 40(6):655-667. doi:  10.7519/j.issn.1000-0526.2014.06.002
    [18]
    王秀明, 俞小鼎, 周小刚, 等."6.3"区域致灾雷暴大风形成及维持原因分析.高原气象, 2012, 31(2):504-514. http://mall.cnki.net/magazine/Article/GYQX201202025.htm
    [19]
    刘建文, 郭虎, 李耀东, 等.天气分析预报物理量计算基础.北京:气象出版社, 2005:187-188.
    [20]
    俞小鼎, 姚秀萍, 熊廷南, 等.新一代天气雷达原理与应用讲义.北京:气象出版社, 2004:101-185.
    [21]
    俞小鼎, 周小刚, 王秀明.雷暴与强对流临近天气预报技术进展.气象学报, 2012, 70(3):311-337. doi:  10.11676/qxxb2012.030
    [22]
    Doswell Ⅲ C A, Brooks H E, Maddox R A.flash flood forecasting:An ingredients based methodology.Wea Forecasting, 1996, 11:560-581. doi:  10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
    [23]
    朱乾根, 林锦瑞, 寿绍文, 等.天气学原理和方法.北京:气象出版社, 2007:424-434.
    [24]
    陆汉城, 杨国祥.中尺度天气原理和预报(第二版).北京:气象出版社, 2004:274-275.
    [25]
    Johns R H, Doswell Ⅲ C A.Severe local storms forecasting.Wea Forecasting, 1992, 7:588-612. doi:  10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2
    [26]
    俞小鼎.关于冰雹的融化层高度.气象, 2014, 40(6):649-654. doi:  10.7519/j.issn.1000-0526.2014.06.001
    [27]
    张一平, 牛淑贞, 席世平, 等.雷暴外流边界与郑州强对流天气.气象, 2005, 31(8):54-56. doi:  10.7519/j.issn.1000-0526.2005.08.012
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(2)

    Article views (3713) PDF downloads(521) Cited by()
    • Received : 2017-09-06
    • Accepted : 2018-01-24
    • Published : 2018-03-31

    /

    DownLoad:  Full-Size Img  PowerPoint