Shi Baoling, Wang Hongyan, Liu Liping. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. DOI:  10.11898/1001-7313.20180302.
Citation: Shi Baoling, Wang Hongyan, Liu Liping. Coverage capacity of hail detection for Yunnan Doppler weather radar network. J Appl Meteor Sci, 2018, 29(3): 270-281. DOI:  10.11898/1001-7313.20180302.

Coverage Capacity of Hail Detection for Yunnan Doppler Weather Radar Network

DOI: 10.11898/1001-7313.20180302
  • Received Date: 2017-09-15
  • Rev Recd Date: 2018-02-09
  • Publish Date: 2018-05-31
  • Weather radar is a powerful tool for hail detecting, but the detection ability of Doppler weather radar network is influenced not only by weather radar volume coverage pattern (VCP) strategy, but also radar beam blockage due to the complex terrain in mountainous areas. Hail storm cells emerge on the low-level area far from the radar and near the cone of silence is often underestimated. In addition, meteorological scatter objects are distorted at less terrain blockage areas or even can't be detected completely at severe blockage area. Radar beam blockage by various terrain shape in mountainous region is very common, resulting in some of storm cells difficult to identify by weather radar network. Therefore, an assessment method of hail observation ability for Doppler weather radar network is proposed, based on the average height of 0℃, -20℃ level and the height of the core of storm cells. The multiple layer grid data of three-dimensional coverage for Yunnan C-band Doppler weather radar network is built up by combining the radar beam hybrid scanning method with the high-resolution Shuttle Radar Topography Mission (STRM) terrain data. According to characteristics of the hail cell stretching level, the coverage scope above 0℃ level of weather radar network is considered as an assessment method to evaluate hail detecting capabilities of weather radar network. Based on C band Doppler weather radar network in Yunnan Province, 607 hail ground report samples are collected during 2014-2016 to analyze capabilities and limitations of hail detection in the low-latitude plateau, and the detection area classification is summed up. Results show that it is reasonable for judging effects of the hailstorm detection with the height of 0℃ level and several height differences. The suitable detecting area account for roughly 75% throughout the province. Areas located in the northeast part of Zhaotong prefecture and the northeast part of Lincang prefecture are evaluated as hail detecting disadvantaged zone because of severe terrain blockage. Theoretically, with weather radars, based on the hailstorm probability during 2014-2016, over 90% hailstorm in Yunnan can be monitored and recognized effectively. About 3% hailstorm cell can be recognized when higher than 8 km, and about 6% hailstorm falls around radars that only cover below 8 km, and these may cause underestimation. 8.5% area of Yunnan is still beyond coverage, and 9 radars will be put into operational observation network. The proposed method can be used for assessing the ability of hailstorm detecting with the Doppler weather radar network quantitatively.
  • Fig. 1  Schematic diagram of detective effect on the vertical structure of storm cell at Zhaotong radar site

    (the section of radar beam is depicted by different color belts)

    Fig. 2  The blockage altitude of Yunnan C band Doppler weather radar network

    (a)network of 7 radars, (b)network of 9 radars

    Fig. 3  The detectable thickness of Yunnan Doppler weather radar network

    (a)network of 7 radars, (b)network of 9 radars

    Fig. 4  Coverage of Yunnan C band Doppler weather radar(the shaded denotes effective coverage area)

    (a)below 0℃ layer for 7 radars, (b)below 0℃ layer for 9 radars, (c)between 0℃ and -20℃ layers for 7 radars, (d)between 0℃ and-20℃ layers for 9 radars, (e)above-20℃ layer for 7 radars, (f)above-20℃ layer for 9 radars

    Fig. 5  Hail observation somatotype for Yunnan C band weather radar network

    (a)7 radars, (b)9 radars

    Fig. 6  Different altitude play position indicator(CAPPI) reflectivity overlay hail fallout zone and radar echo for hail cloud at Zhaotong from 1900 BT to 2400 BT on 6 May 2015

    (a)5.0 km, (b)7.0 km, (c)8 km, (d)10.5 km

    Table  1  Average height of 0℃ layer in Yunnan Province and neighbouring regions

    月份 西昌 威宁 腾冲 蒙自 思茅 昆明 丽江
    1 3.38 3.45 3.54 4.06 4.14 3.71 3.57
    2 3.56 3.51 3.66 4.16 4.18 3.85 3.66
    3 3.96 3.90 4.08 4.49 4.49 4.24 4.01
    4 4.34 4.32 4.47 4.79 4.77 4.61 4.47
    5 4.77 4.78 4.93 5.09 5.07 4.94 4.91
    6 5.27 5.29 5.37 5.39 5.36 5.36 5.38
    7 5.43 5.40 5.44 5.39 5.35 5.36 5.48
    8 5.35 5.33 5.41 5.32 5.34 5.33 5.37
    9 5.11 5.07 5.19 5.18 5.19 5.10 5.17
    10 4.58 4.62 4.87 4.95 4.98 4.82 4.82
    11 3.87 3.94 4.30 4.51 4.58 4.26 4.19
    12 3.44 3.51 3.73 4.05 4.17 3.73 3.73
    DownLoad: Download CSV

    Table  2  Average Height of -20℃ layer in Yunnan Province and neighbouring regions

    月份 西昌 威宁 腾冲 蒙自 思茅 昆明 丽江
    1 6.78 7.04 7.27 7.65 7.68 7.34 6.90
    2 6.76 7.00 7.24 7.64 7.65 7.32 6.87
    3 7.01 7.14 7.35 7.76 7.73 7.45 7.11
    4 7.43 7.55 7.70 7.95 7.92 7.74 7.52
    5 8.05 8.15 8.31 8.44 8.38 8.26 8.15
    6 8.67 8.61 8.79 8.68 8.73 8.71 8.73
    7 8.83 8.72 8.89 8.73 8.75 8.75 8.84
    8 8.74 8.68 8.81 8.70 8.66 8.71 8.80
    9 8.46 8.48 8.56 8.50 8.55 8.46 8.49
    10 8.02 8.09 8.23 8.31 8.33 8.19 8.12
    11 7.32 7.45 7.78 7.95 8.02 7.73 7.49
    12 6.98 7.15 7.47 7.79 7.85 7.51 7.14
    DownLoad: Download CSV

    Table  3  Storm cell primary parameters of hail day in Yunnan during 2014-2016(unit:%)

    单体参数 2.0~4.9 km 5.0~8.0 km 高于8.0 km
    质心高度 49.1 49.5 1.4
    最大反射率因子高度 48.4 50.7 0.9
    单体高度 8.6 77.2 14.3
    单体底部高度 68.5 31.3 0.2
    45 dBZ高度 15.3 61.8 22.9
      注:对流单体样本量为8883。
    DownLoad: Download CSV

    Table  4  Coverage ratio of Yunnan CINRAD network at different heights(unit:%)

    高度 7部雷达 9部雷达
    低于5 km 37.0 52.1
    5~8 km 62.0 69.3
    高于8 km 70.9 76.3
    DownLoad: Download CSV

    Table  5  Comparison of hail detection area in Yunnan CINRAD(unit:%)

    区域 7部雷达 9部雷达 面积增加
    0区 13.2 8.5 -4.7
    1区 48.8 58.4 9.6
    2区 21.1 16.6 -4.5
    3区 1.8 1.7 -0.1
    4区 1.2 1.0 -0.2
    5区 0.9 0.7 -0.2
    DownLoad: Download CSV
  • [1]
    李国翠, 刘黎平, 张秉祥, 等.基于雷达三维组网数据的对流性地面大风自动识别.气象学报, 2013(6):1160-1171. doi:  10.11676/qxxb2013.090
    [2]
    胡胜, 罗聪, 张羽, 等.广东大冰雹风暴单体的多普勒天气雷达特征.应用气象学报, 2015, 26(1):57-65. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20150106&flag=1
    [3]
    王令, 郑国光, 康玉霞, 等.多普勒天气雷达径向速度图上的雹云特征.应用气象学报, 2006, 17(3):281-287. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060349&flag=1
    [4]
    王改利, 刘黎平, 阮征.多普勒雷达资料在暴雨临近预报中的应用.应用气象学报, 2007, 31(3):12-15. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20070363&flag=1
    [5]
    朱平, 李生辰, 肖建设, 等.天气雷达回波外推技术应用研究.气象, 2008, 34(7):3-9. doi:  10.7519/j.issn.1000-0526.2008.07.001
    [6]
    俞小鼎.强对流天气的新一代天气雷达探测和预警.气象科技进展, 2011, 1(3):33-43.
    [7]
    方德贤, 李红斌, 董新宁, 等.风暴分类识别技术在人工防雹中的应用.气象, 2016, 42(9):1124-1134. doi:  10.7519/j.issn.1000-0526.2016.09.010
    [8]
    段艺萍, 刘寿东, 刘黎平, 等.新一代天气雷达三维组网产品在人工防雹的应用.高原气象, 2014, 33(5):1426-1439. doi:  10.7522/j.issn.1000-0534.2013.00139
    [9]
    东高红, 刘黎平.雷达与雨量计联合估测降水的相关性分析.应用气象学报, 2012, 23(1):30-39. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20120104&flag=1
    [10]
    江源, 刘黎平, 庄薇.多普勒天气雷达地物回波特征及其识别方法改进.应用气象学报, 2009, 20(2):203-213. doi:  10.11898/1001-7313.20090210
    [11]
    陈明轩, 俞小鼎, 谭晓光, 等.北京2004年"7.10"突发性对流强降水的雷达回波特征分析.应用气象学报, 2006, 17(3):333-345. http://qikan.camscma.cn/jams/ch/reader/view_abstract.aspx?file_no=20060359&flag=1
    [12]
    廖玉芳, 俞小鼎, 吴林林, 等.强雹暴的雷达三体散射统计与个例分析.高原气象, 2007, 26(4):812-820. http://www.cnki.com.cn/Article/CJFDTotal-GYQX200704018.htm
    [13]
    朱君鉴, 郑国光, 王令, 等.冰雹风暴中的流场结构及大冰雹生成区.大气科学学报, 2004, 27(6):735-742. http://www.cqvip.com/Main/Detail.aspx?id=11482481
    [14]
    张鸿发, 左洪超, 郄秀书, 等.平凉冰雹云回波特征分析.气象学报, 2002, 60(1):110-115. doi:  10.11676/qxxb2002.013
    [15]
    冯晋勤, 俞小鼎, 傅伟辉, 等.2010年福建一次早春强降雹超级单体风暴对比分析.高原气象, 2012, 31(1):239-250. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gyqx201201026
    [16]
    吴木贵, 张信华, 傅伟辉, 等.2010年3月5日闽北经典超级单体风暴天气过程分析.高原气象, 2013, 32(1):250-267. doi:  10.7522/j.issn.1000-0534.2012.00025
    [17]
    郑媛媛, 姚晨, 郝莹, 等.不同类型大尺度环流背景下强对流天气的短时临近预报预警研究.气象, 2011, 37(7):795-801. doi:  10.7519/j.issn.1000-0526.2011.07.003
    [18]
    Kessinger C J, Brandes E A.A Comparison of the NEXRAD and NSSL Hail Detection Algorithms//Preprints, 27th Conf on Radar Meteorology.Amer Meteor Soc, 1995:603-605.
    [19]
    Waldvogel A, Schmid W, Federer B.The kinetic energy of hailfalls.Part Ⅰ:Hailstone spectra.J Appl Meteor, 1978, 17(4):515-520. doi:  10.1175/1520-0450(1978)017<0515:TKEOHP>2.0.CO;2
    [20]
    张秉祥, 李国翠, 刘黎平, 等.基于模糊逻辑的冰雹天气雷达识别算法.应用气象学报, 2014, 25(4):415-426. doi:  10.11898/1001-7313.20140404
    [21]
    张崇莉, 向明堃, 赖云华, 等.滇西北高原冰雹、短时强降水的多普勒雷达回波特征比较.暴雨灾害, 2011, 30(1):64-69. http://www.cnki.com.cn/Article/CJFDTOTAL-HBQX201101011.htm
    [22]
    程建刚, 晏红明, 严华生, 等.云南重大气候灾害特征和成因分析.北京:气象出版社, 2009.
    [23]
    段玮, 胡娟, 赵宁坤, 等.云南冰雹灾害气候特征及其变化.灾害学, 2017, 32(2):90-96. http://d.old.wanfangdata.com.cn/Periodical/zhx201702016
    [24]
    徐八林, 刘黎平, 王改利.超低仰角扫描改进高山雷达降水估测.高原气象, 2011, 30(5):1337-1345. http://www.oalib.com/references/16094298
    [25]
    张扬成, 游文华, 高翔宇, 等.新一代天气雷达负仰角探测能力分析.气象科技, 2013, 41(1):15-19. https://www.wenkuxiazai.com/doc/c00f9b63a32d7375a4178086.html
    [26]
    王红艳, 刘黎平.新一代天气雷达降水估算的区域覆盖能力评估.高原气象, 2015, 34(6):1772-1784. doi:  10.7522/j.issn.1000-0534.2014.00122
    [27]
    王红艳, 刘黎平, 何丽萍, 等.浙江山区新一代天气雷达波束遮挡分析.高原气象, 2014, 33(6):1737-1747. doi:  10.7522/j.issn.1000-0534.2013.00173
    [28]
    王曙东, 裴翀, 郭志梅, 等.基于SRTM数据的中国新一代天气雷达覆盖和地形阻挡评估.气候与环境研究, 2011, 16(4):459-468. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhyhjyj201104006
    [29]
    Westrick K J, Mass C F, Colle B A.The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States.Bull Amer Meteor Soc, 1999, 80(11):2289-2298. doi:  10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2
    [30]
    Krajewski W F, Ntelekos A, Goska R.A GIS-based methodology for the assessment of weather radar beam blockage in mountainous regions:Two examples from the US NEXRAD network.Computers & Geosciences, 2006, 32(3):283-302. https://www.sciencedirect.com/science/article/pii/S0098300405001548
    [31]
    Witt A, Eilts M D, Stumpf G J, et al.An enhanced hail detection algorithm for the WSR-88D.Wea Forecasting, 1998, 13(2):286-303. doi:  10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2
    [32]
    俞小鼎.新一代天气雷达原理与业务应用.北京:气象出版社, 2006:145-148.
    [33]
    肖艳姣, 刘黎平.新一代天气雷达组网资料的三维格点化及拼图方法研究.气象学报, 2006, 64(5):647-656. doi:  10.11676/qxxb2006.063
    [34]
    王红艳, 刘黎平, 王改利, 等.新一代天气雷达三维数字组网系统开发及应用.应用气象学报, 2009, 20(2):214-224. doi:  10.11898/1001-7313.20090211
    [35]
    杨吉, 刘黎平, 李国平, 等.基于雷达回波拼图资料的风暴单体和中尺度对流系统识别、跟踪及预报技术.气象学报, 2012, 70(6):1347-1355. doi:  10.11676/qxxb2012.113
    [36]
    周丽娜, 张萍, 刘国强.用三维冰雹云模式模拟贵州一次冰雹过程.贵州气象, 2008, 32(1):12-14. https://www.wenkuxiazai.com/doc/9df9b07b011ca300a6c390da.html
  • 加载中
  • -->

Catalog

    Figures(6)  / Tables(5)

    Article views (4654) PDF downloads(323) Cited by()
    • Received : 2017-09-15
    • Accepted : 2018-02-09
    • Published : 2018-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint