Wang Zhicheng, Zhang Xuefen, Mao Jiajia, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. DOI:  10.11898/1001-7313.20180303.
Citation: Wang Zhicheng, Zhang Xuefen, Mao Jiajia, et al. Comparison analysis on detection performance of ground-based microwave radiometers under different weather conditions. J Appl Meteor Sci, 2018, 29(3): 282-295. DOI:  10.11898/1001-7313.20180303.

Comparison Analysis on Detection Performance of Ground-based Microwave Radiometers Under Different Weather Conditions

DOI: 10.11898/1001-7313.20180303
  • Received Date: 2017-10-30
  • Rev Recd Date: 2018-02-28
  • Publish Date: 2018-05-31
  • Ground-based microwave radiometer (MWR) detects atmospheric temperature and humidity by receiving atmospheric microwave radiation, which can conduct 24-hour unattended, high-resolution observation. It can detect short-time variation of atmospheric elements. MWR is an important supplement to routine sounding. However, it has different observation accuracy at different times, seasons and weather conditions. Observation accuracy and influencing factors analyses are essential in scientific experiments and operation processes.In order to minimize error effects of radiosonde migration, results from three types of remote sensing devices under two weather conditions are compared. By analyzing differences of temperature and relative humidity between sounding and three MWRs at home and abroad of different technology systems in no-cloud and cloud samples, performances of these MWRs are evaluated.In the aspect of temperature, the correlation coefficient for MWRs and sounding is above 0.98. In no-cloud condition, errors of MWR-G and MWR-A are less than ±1℃ (the former is negative and the latter is positive). MWR-A has -1.8℃ deviation. Root mean square errors (RMSEs) of three types of MWRs increase with height. RMSEs of MWR-G, MWR-A and MWR-C are 2.2℃, 3.0℃ and 3.8℃. In cloud condition, vertical distributions of temperature error of three microwave radiometers have no significant changes in comparison with no-cloud condition. The RMSEs of three microwave radiometers in cloud condition are 0.5℃ higher than those in no-cloud condition. Microwave radiometer can identify the near surface radiation inversion layer accurately. But it's hard to identify the high-altitude inversion layer. In the aspect of relative humidity, the error of cloud samples is higher than the error of no-cloud samples, and the error of middle-high cloud samples is higher than that of low cloud samples. In no-cloud condition, RMSEs of MWR-A and MWR-C are 15% and 18%, less than the RMSE of MWR-G. In cloud condition, RMSEs of MWR-G, MWR-A and MWR-C (about 26%) are larger than those in no-cloud condition. The existence of cloud has a major influence on the detection of microwave radiometer relative humidity:No matter which height level, errors of low-middle cloud samples are bigger than those of no-cloud samples. Errors of high cloud samples are bigger than those of no-cloud samples, and the amplification of RMSE is about 10%-20%. This comparison analysis will provide some reference basis for the further improvement of the accuracy of MWR atmospheric profiles and the scientific research, promotion and operation processes of MWRs.
  • Fig. 1  Typical case at 1315 BT 15 July 2017

    (a)base reflectivity of cloud radar, (b)cloud base height of laser ceilometer

    Fig. 2  The sequence of microwave radiometers and sounding temperature profiles

    (a)rain flag, (b)sounding, (c)MWR-G, (d)MWR-A, (e)MWR-C

    Fig. 3  Temperature difference sequence among microwave radiometers and sounding

    (a)rain flag, (b)MWR-G, (c)MWR-A, (d)MWR-C

    Fig. 4  Temperature profiles of microwave radiometers in temperature inversion condition

    (a)0700 BT 2 Dec 2016, (b)0700 BT 31 Dec 2016, (c)1900 BT 2 Jan 2017, (d)0700 BT 3 Jan 2017, (e)0700 BT 13 Jan 2017, (f)1900 BT 15 Jan 2017, (g)0700 BT 6 Feb 2017, (h)1900 BT 14 Jan 2017

    Fig. 5  The sequence of microwave radiometers and sounding relative humidity profiles

    (a)rain flag, (b)sounding, (c)MWR-G, (d)MWR-A, (e)MWR-C

    Fig. 6  Temperature fitting between microwave radiometers and sounding in no-cloud condition

    (a)MWR-G, (b)MWR-A, (c)MWR-C

    Fig. 7  Temperature errors of microwave radiometers in no-cloud condition

    (a)mean error, (b)root mean square error

    Fig. 8  Relative humidity errors of microwave radiometers in no-cloud condition

    (a)mean error, (b)root mean square error

    Fig. 9  Temperature errors of microwave radiometers in cloud condition

    (a)mean error, (b)root mean square error

    Fig. 10  Relative humidity errors of microwave radiometers in cloud condition

    (a)mean error, (b)root mean square error

    Fig. 11  Relative humidity root mean square error of MWR-C in no-cloud and cloud conditions

    (a)low cloud, (b)middle cloud, (c)high cloud, (d)low-middle cloud

    Table  1  The mean error and root mean square error of three microwave radiometers(unit: K)

    通道频率/GHz MWR-G MWR-A MWR-C
    平均误差 均方根误差 平均误差 均方根误差 平均误差 均方根误差
    22.24 0.8574 4.0925 -0.4877 4.0592 2.1631 4.9768
    23.04 0.6795 3.7895 -0.2190 3.7839 -0.2361 3.7079
    23.84 0.4690 3.2603 -0.9239 3.3203 1.0372 3.0210
    25.44 0.2308 2.3124 0.3042 2.3903 2.4818 3.2500
    26.24 0.0522 2.1165 -1.4183 2.9852 0.6053 1.8368
    27.84 0.0177 1.9188 -1.6491 2.9130 0.7589 1.5521
    31.40 0.1240 1.6238 -0.8981 2.1127 0.1778 1.4191
    51.26 4.1329 4.5071 4.5629 4.8050 3.3149 4.8146
    52.28 2.5576 3.2039 3.6608 3.8599 4.3149 5.3508
    53.86 2.7609 3.1892 0.7982 1.7638 3.8261 4.3381
    54.94 -0.6435 2.1828 -0.9212 2.3392 0.2680 3.1427
    56.66 -1.1438 2.9987 -1.3116 3.1192 0.3860 3.3706
    57.30 -1.1575 3.1308 -1.4247 3.2401 0.4923 3.3628
    58.00 -1.0578 3.1764 -1.3797 3.3010 0.4982 3.4993
    DownLoad: Download CSV
  • [1]
    黄治勇, 徐桂荣, 王晓芳, 等.地基微波辐射资料在短时暴雨潜势预报中的应用.应用气象学报, 2013, 24(5):576-584. doi:  10.11898/1001-7313.20130507
    [2]
    刘思波, 何文英, 刘红燕, 等.地基微波辐射计探测大气边界层高度方法.应用气象学报, 2015, 26(5):626-635. doi:  10.11898/1001-7313.20150512
    [3]
    鲍艳松, 钱程, 闵锦忠, 等.利用地基微波辐射计资料反演0~10 km大气温湿廓线试验研究.热带气象学报, 2016, 32(2):163-171. http://www.cnki.com.cn/Article/CJFDTOTAL-RDQX201602003.htm
    [4]
    刘红燕, 王迎春, 王京丽, 等.由地基微波辐射计测量得到的北京地区水汽特性的初步分析.大气科学, 2009, 33(2):388-396. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_daqikx200902016
    [5]
    Han Y, Westwater E R.Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors.J Atmos Ocean Technol, 1995, 12(5):1050-1062. doi:  10.1175/1520-0426(1995)012<1050:RSOTWV>2.0.CO;2
    [6]
    刘建忠, 张蔷.地基微波辐射计反演产品评价.气象科技, 2010, 38(3):325-331.
    [7]
    刘红燕.三年地基微波辐射计观测温度廓线的精度分析.气象学报, 2011, 69(4):719-728. doi:  10.11676/qxxb2011.063
    [8]
    侯叶叶, 刘红燕, 鲍艳松.地基微波辐射计反演水汽密度廓线精度分析.气象科技, 2016, 44(5):702-709. http://d.old.wanfangdata.com.cn/Periodical/qxkj201605002
    [9]
    张文刚, 徐桂荣, 颜国跑, 等.微波辐射计与探空仪测值对比分析.气象科技, 2014, 42(5):737-741. http://www.doc88.com/p-1425302437426.html
    [10]
    魏重, 雷恒池, 沈志来.地基微波辐射计的雨天探测.应用气象学报, 2001, 12(增刊Ⅰ):65-72. http://www.cnki.com.cn/Article/CJFDTOTAL-YYQX2001S1008.htm
    [11]
    王振会, 李青, 楚艳丽, 等.地基微波辐射计工作环境对K波段亮温观测影响.应用气象学报, 2014, 25(6):711-721. doi:  10.11898/1001-7313.20140607
    [12]
    傅新姝, 谈建国.地基微波辐射计探测资料质量控制方法.应用气象学报, 2017, 28(2):209-217. doi:  10.11898/1001-7313.20170208
    [13]
    周玉驰.地基多通道微波辐射计反演大气温湿廓线的研究.北京:中国科学院研究生院, 2010.
    [14]
    唐英杰, 马舒庆, 杨玲, 等.云底高度的地基毫米波云雷达观测及其对比.应用气象学报, 2015, 26(6):680-687. doi:  10.11898/1001-7313.20150604
    [15]
    姚雯, 马颖, 高丽娜.L波段与59-701探空系统相对湿度对比分析.应用气象学报, 2017, 28(2):218-226. doi:  10.11898/1001-7313.20170209
    [16]
    黄兴友, 张曦, 冷亮, 等.基于MonoRTM模型的微波辐射计反演方法研究.气象科学, 2013, 33(2):138-145. doi:  10.3969/2012jms.0127
    [17]
    车云飞, 马舒庆, 杨玲, 等.云对地基微波辐射计反演湿度廓线的影响.应用气象学报, 2015, 26(2):193-202. doi:  10.11898/1001-7313.20150207
    [18]
    邢业新, 娄国伟, 李兴国, 等.云、雨天气对3 mm波段天空亮温的影响.现代防御技术, 2010, 38(5):82-85. http://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201005023.htm
    [19]
    白翎, 师春香, 刘冰, 等.CRTM微波亮温模拟对地表和云参数的敏感性分析.气象, 2014, 40(11):1363-1371. doi:  10.7519/j.issn.1000-0526.2014.11.009
  • 加载中
  • -->

Catalog

    Figures(11)  / Tables(1)

    Article views (3706) PDF downloads(351) Cited by()
    • Received : 2017-10-30
    • Accepted : 2018-02-28
    • Published : 2018-05-31

    /

    DownLoad:  Full-Size Img  PowerPoint